Answer: 90% confidence interval is; ( - 0.0516, 0.3752 )
Step-by-step explanation:
Given the data in the question;
n1 = 72, n2 = 17
P1 = 54 / 72 = 0.75
P2 = 10 / 17 = 0.5882
so
P_good = 0.75
P_bad = 0.5882
standard ERRROR will be;
SE = √[(0.75×(1-0.75)/72) + (0.5882×(1-0.5882)/17)]
SE = √( 0.002604 + 0.01424)
SE = 0.12978
given confidence interval = 90%
significance level a = (1 - 90/100) = 0.1, |Z( 0.1/2=0.05)| = 1.645 { from standard normal table}
so
93% CI is;
(0.75 - 0.5882) - 1.645×0.12978 <P_good - P_bad< (0.75 - 0.5882) + 1.645×0.12978
⇒0.1618 - 0.2134 <P_good - P_bad< 0.1618 + 0.2134
⇒ - 0.0516 <P_good - P_bad< 0.3752
Therefore 90% confidence interval is; ( - 0.0516, 0.3752 )