Answer:
95% confidence interval for the mean ARSMA score for first-generation Mexican Americans
(2.13264 , 2.58736)
Explanation:
Step(i):-
Mean of the Population = 3.0
Standard deviation of the Population = 0.8
Given Mean of the sample(x⁻ ) = 2.36
Standard deviation of the sample (S) = 0.8
size of the sample = 50
Level of significance =0.05
Degrees of freedom = n-1 = 50-1 = 49
![t_{(0.05)/(2) , 49} = 2.0096](https://img.qammunity.org/2022/formulas/mathematics/college/dzvxhgw7wrehc9tr5f3x9mgmek9t2ys29q.png)
Step(ii):-
95% confidence interval for the mean ARSMA score for first-generation Mexican Americans
![(x^(-) - t_{((\alpha )/(2),df )} (S)/(√(n) ) , (x^(-) +t_{((\alpha )/(2),df )} (S)/(√(n) ))](https://img.qammunity.org/2022/formulas/mathematics/college/brrl2vh2xs5a6jg4ihv04r7bh3h3idra30.png)
![(2.36 - 2.0096 (0.8)/(√(50) ) , 2.36 +2.0096(0.8)/(√(50) ))](https://img.qammunity.org/2022/formulas/mathematics/college/iazopwjrl83vd98sqvgyibtcij7tqpjakc.png)
( 2.36 - 0.22736 , 2.36 + 0.22736)
(2.13264 , 2.58736)
Final answer:-
95% confidence interval for the mean ARSMA score for first-generation Mexican Americans
(2.13264 , 2.58736)