Answer:
The answer is below
Step-by-step explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity (
) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:
![\omega^2=\omega_o^2+2\alpha \theta\\\\19.67^2-50.13^2=2\alpha(272.9)\\\\19.67^2=50.13^2+2\alpha(272.9)\\\\2\alpha(272.9)=-2126.108\\\\\alpha=-3.89\ rad/s^2\\\\](https://img.qammunity.org/2022/formulas/physics/college/7ezflawhilo90e18uf58k1yld5r162g0mf.png)
b)
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:
![\omega^2=\omega_o^2+2\alpha \theta\\\\0=50.13^2+2(-3.89)\theta\\\\2(3.89)\theta=50.13^2\\\\2(3.89)\theta=2513\\\\\theta=323\ rad\\\\revolutions=(\theta)/(2\pi r)=(323)/(2\pi(0.4572)) =112.4\ rev](https://img.qammunity.org/2022/formulas/physics/college/lvzvz20ti9o5kb3lz15swx1i9sw9c7y0fu.png)
θ = 323 rad