Answer:
236 trucks will be registered in the city in Year 9.
Explanation:
The growth is given to be exponential. The general form of exponential function is,
![y=ab^x](https://img.qammunity.org/2019/formulas/mathematics/college/h6f3tn5p9rzzksznrvdqdhrw613dtzqydg.png)
where a and b are constants.
The data given are
![(0,100),(1,110),(2,121)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fd8rcb0qrdoinrpa6v0k5yk1v6nz1qhayq.png)
Putting
in the function,
![\Rightarrow 100=ab^0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/uce9oe48codpvp5jsbzz1w73g0w54znsh5.png)
![\Rightarrow a* 1=100](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3r49drjftv33qctnjx1r8p3v8dxwfmql8f.png)
![\Rightarrow a=100](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xnxvw5r3lvfisq3iqzhpowpzat52l13i7y.png)
Putting the value in the function,
![y=100b^x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fnc6pj3ag9ao3cj3uwjdv72uvnuowe1ca2.png)
Putting
in the function,
![\Rightarrow 110=100b^1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/28y3w4p7tfkhnxj0rki9kteixhkxkhj41u.png)
![\Rightarrow 100b=110](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6z9d3up0dkhhv928e76bcfsurbmjas1kwt.png)
![\Rightarrow b=(110)/(100)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mjwheggx6jrs3f1e3zu82aj6b9tg5i9yrg.png)
![\Rightarrow b=1.1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/26j12v025fxfmcu5t02l6dxmuswf9cfd15.png)
So the function becomes
![y=100(1.1)^x](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rztj6p3e7zhv9ct77n6ygm03glpastwupg.png)
As we have to calculate the number of trucks registered in year 9, so putting x=9 in the function,
![y=100(1.1)^9=235.8\approx 236](https://img.qammunity.org/2019/formulas/mathematics/middle-school/t614royfmc9n1svblrmx5ddxjm0nfz3pkr.png)