Answer:
The value of x =-3 and y=1 in the system of linear equation.
Explanation:
Given equations
-2x+3y+z=7
-4x-y-2z=15
x+2y+3z=-7
Using cramer's rule to find x and y
First we make matrix of coefficient of x,y and z and then find the determinant
![A=\begin{bmatrix}-2&3&1\\-4&-1&-2\\1&2&3\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gdlxm0if5z40uwfsmm7ef6r8777j8asrp4.png)
Now we find determinant of A
|A|=-2(-3+4)-3(-12+2)+1(-8+1)
|A|=21
![A_x=\begin{bmatrix}7&15&-7\\-4&-1&-2\\1&2&3\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/u7l3080e02w2q4nwil3seuttsn6rrjxcdc.png)
Determinant of Ax
|Ax|=7(-3+4)-3(45-14)+1(30-7)
|Ax|=-63
![A_y=\begin{bmatrix}7&15&-7\\-4&-1&-2\\1&2&3\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7zdlm9mftsq77w6z646n5gy7ompaflsq0u.png)
Determinant of Ay
|Ay|=-2(45-14)-7(-12+2)+1(28-15)
|Ay|=21
![A_z=\begin{bmatrix}-2&3&1\\-4&-1&-2\\7&15&-7\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cn50c91wvvp2m7j88gznh4ysjfer3x6oln.png)
Determinant of Az
|Az|=-2(7-30)-3(28-15)+7(-8+1)
|Az|=-42
Now we find for x, y and z
![x=(|A_x|)/(|A|)\Rightarrow (-63)/(21)=-3](https://img.qammunity.org/2019/formulas/mathematics/middle-school/65c4zx2kp9rargtbpsy6cuouz8ewzomsjk.png)
![y=(|A_y|)/(|A|)\Rightarrow (21)/(21)=1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/dff2n0esplwh701bp1c5146qawfbyhc6xk.png)
![z=(|A_z|)/(|A|)\Rightarrow (-42)/(21)=-2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/56nizjrus2lgzkv4jn3aqnhjv7255i8l4w.png)
Thus, The value of x =-3 and y=1 in the system of linear equation.