116k views
5 votes
Express the integral as a limit of Riemann sums. Do not evaluate the limit. (Use the right endpoints of each subinterval as your sample points.)

int 1 between 5 x/2+3^3*dx

User Valy Dia
by
3.7k points

1 Answer

6 votes

Answer:


\mathbf{4 \lim \limits _(n \to \infty) \sum \limits ^n_(i=1) \Big ( (n(n+4i))/(2n^3 +(n+4i)^3) \Big )}

Explanation:

Given integral:


\int ^5_1 (x)/(2+x^3) \ dx


\mathbf{Using \ Riemann \ sums; \ we \ have: }


\int ^b_a \ f(x) \ dx = \lim_(n \to \infty) \sum \limits ^n_(i =1) \ f( a + i \Delta x) \Delta x


here; \ \Delta x = (b-a)/(n)


\int ^5_1 (x)/(2+x^3) \ dx = f(x) = (x)/(2+x^3)


\implies \Delta x = (5-1)/(n) =(4)/(n)


f(a + i \Delta x ) = f ( 1 + (4i)/(n))


f( 1 + (4i)/(n)) = (n^2 ( n+4i))/(2n^3 + (n + 4i)^3)


\lim_(n \to \infty) \sum \limits ^n_(i=1) \ f(a + i \Delta x) \Delta x = \lim_(n \to \infty) \sum \limits ^n_(i=1) \Big ( (n^2(n+4i))/(2n^3 +(n+4i)^3) \Big )(4)/(n)


\mathbf{= 4 \lim \limits _(n \to \infty) \sum \limits ^n_(i=1) \Big ( (n(n+4i))/(2n^3 +(n+4i)^3) \Big )}

User Dennis Sparrow
by
3.4k points