Answer:
![|v|(t)=\sqrt{v_(x)^(2)(t)+v_(y)^(2)(t)+v_(z)^(2)(t)}=C](https://img.qammunity.org/2022/formulas/physics/college/f9pcm5zzgxnu36mwzxdoqfwp3q2c9n8mct.png)
![2v(t)\cdot (dv(t))/(dt)=0](https://img.qammunity.org/2022/formulas/physics/college/af17yeu4itzu7h7wnt83o27gsgcr8ki2nn.png)
![v(t)\cdot a(t)=0](https://img.qammunity.org/2022/formulas/physics/college/tm4tzjwqu80ivr3ob9cms9rsgvbykcy4b3.png)
Step-by-step explanation:
Let's start with the definition of a constant velocity.
If the velocity magnitude, in three dimensions, is a constant value (C) we have a constant velocity, which means.
![|v|(t)=\sqrt{v_(x)^(2)(t)+v_(y)^(2)(t)+v_(z)^(2)(t)}=C](https://img.qammunity.org/2022/formulas/physics/college/f9pcm5zzgxnu36mwzxdoqfwp3q2c9n8mct.png)
Now, we know that the dot product between v(t) and v(t) is the |v|².
![v(t)\cdot v(t)=|v|^(2)(t)](https://img.qammunity.org/2022/formulas/physics/college/pd3lm8s00nrgrja4yzgbqxnn0mwflv8avb.png)
If we take the derivative whit respect to time in both sides of this equation we will have:
![(d)/(dt)(v(t)\cdot v(t))=(d)/(dt)|v|^(2)(t)](https://img.qammunity.org/2022/formulas/physics/college/jq1vbwi55lwgews3fit77jn3ox6rc8xqv3.png)
We apply the product rule on the left side and the right side will zero because the derivative of a constant is 0.
![(dv(t))/(dt)\cdot v(t)+v(t)\cdot (dv(t))/(dt)=0](https://img.qammunity.org/2022/formulas/physics/college/abfycguwak3qnf61p4m4fkqvxuzmoxlnjh.png)
![2v(t)\cdot (dv(t))/(dt)=0](https://img.qammunity.org/2022/formulas/physics/college/af17yeu4itzu7h7wnt83o27gsgcr8ki2nn.png)
We know that dv(t)/dt = a(t) (using the acceleration definiton)
Therefore, we conclude:
![v(t)\cdot (dv(t))/(dt)=0](https://img.qammunity.org/2022/formulas/physics/college/ibw4ft0d075aax2ycef3lmn2g2opbl8g2f.png)
![v(t)\cdot a(t)=0](https://img.qammunity.org/2022/formulas/physics/college/tm4tzjwqu80ivr3ob9cms9rsgvbykcy4b3.png)
If the dot product is 0, it means that v(t) and a(t) are orthogonal.
I hope it helps you!