209k views
3 votes
If A is a quadrant 1 angle, such that sinA=2/5 and B is a quadrant 3 angle, such that tanB=1, find sin(A+B) and cos(A+B) and the quadrant in with A+B lies in. Find sin2A.

*Please Show Work*

User ChaChaPoly
by
8.5k points

1 Answer

2 votes

Answers: sin(A+B)=
(-2√(2)-√(42))/(10), cos(A+B)=
(2√(2)-√(42))/(10), A+B=Quadrant 3, sin(2A)=
(4√(21))/(25)

NOTES:

sin A =
(2)/(5) ⇒ cos A =
(√(21))/(5)

since tan B = 1 and is in Quadrant 3, then

sin B =
-(√(2))/(2) and cos B =
-(√(2))/(2)

SIN (A + B):

sin (A + B) = (sin A * cos B) + (cos A * sin B)

= (
(2)/(5))(
-(√(2))/(2)) + (
(√(21))/(5))(
-(√(2))/(2))

=
-(2√(2))/(10) +
-(√(42))/(10)

=
(-2√(2)-√(42))/(10)

COS (A + B):

cos (A + B) = (cos A * cos B) - (sin A * sin B)

= (
(√(21))/(5))(
-(√(2))/(2)) - (
(2)/(5))(
-(√(2))/(2))

=
-(√(42))/(10) -
-(2√(2))/(10)

=
(2√(2)-√(42))/(10)

SIN 2A:

sin (A + A) = 2 (sin A * cos A)

= 2 (
(2)/(5))(
(√(21))/(5))

=
(4√(21))/(25)

A + B:

sin A =
(2)/(5)

A = sin⁻¹
((2)/(5))

A = 23.57°

tan B = 1

B = tan⁻¹(1)

B = 45°

= 45° + 180° in Quadrant 3

= 225°

A + B = 23.6° + 225°

= 248.6° which lies in Quadrant 3


User Omal Perera
by
7.6k points