126k views
0 votes
Can anyone solve functions

Can anyone solve functions-example-1
User Jamian
by
8.0k points

2 Answers

4 votes

10


f(x) = (x-1)/(x) = 1 - (1)/(x)


f(f(x)) =1 - (1)/(1 - (1)/(x)) = 1 - (x)/(x-1) = (x-1-x)/(x-1)=(1)/(1-x)


f(f(f(x)) = 1 - (1)/((1)/(1 - x)) = x


f^4(x) = 1-(1)/(x) =f(x)


f^(3k)(x)=x


2017 = 3(672)+1


f^(2017)(x) = f(f^(3(672))(x))=f(x)=(x-1)/(x)

11

f(x)=f(x+1)+f(x-1)

f(20)=15

f(15) - 5 = 15

f(15) = 20

f(16)=f(15)+f(17)=20 +f(17)

f(17)=f(16)+f(18)= 20+f(17)+f(18)

f(18)=-20

f(18)=f(17)+f(19)=-20

f(19)=f(20)+f(18)=15 + f(18)=15 + -20 = -5

f(19) = -5

-20 = f(17) + -5

f(17) = -15

f(16) = 20 + -15= 5

f(16) = 5

Check:

f(15)=20, f(16)=5, f(17)=-15, f(18)=-20, f(19)=-5, f(20)=15

Each has to be the sum of the neighbors.

5=20+-15, -15=5+-20, -20=-15+-5, -5=-20+15, all good

f(x)=f(x+1)+f(x-1)

f(x+1)=f(x)+f(x+2)

f(x)=f(x)+f(x+2)+f(x-1)

f(x+2)=-f(x-1)

f(x+3)=-f(x)

f(x)=g[x mod 6]

where g is the the table

g(0)=-20, g(1)=-5, g(2)=15, g(3)=20, g(4)=5, g(5)=-15

20152015 = 1 mod 6

f(20152015) = g(1) = -5

12

f(0 - 0) + f(0 + 0) = (1/2) f(2(0)) + (1/2) f(2(0))

2f(0) = f(0)

f(0) = 0

f(1) = 1

f(1 - 0) + f(1 + 0) = (1/2) f(2(1)) + (1/2) f(2(0))

2f(1) = (1/2) f(2)

f(2) = 4 f(1)

f(2) = 4

f(2-0) + f(2+0) = (1/2) f(4) + (1/2) f(0)

8 = (1/2) f(4)

f(4) = 16

f(2-1) + f(2+1) = (1/2) f(4) + (1/2) f(2)

f(1) + f(3) = (1/2) f(4) + (1/2) f(2)

f(3) = (1/2) f(4) + (1/2) f(2) - f(1)

f(3) = (1/2) 16 + (1/2) 4 - 1 = 8 + 2 - 1 = 9

f(3) = 9


13

P(x) = x^2 + 2007 x + 1

Let x=P(x)

x = x^2 + 2007 x + 1

0 = x^2 + 2006 x + 1


x = -1003 \pm √(1003^2-1) = -1003 \pm 2 √(251502)

Two real fixed points. P(x)=x

Given any x such that P(x)=x, then P(P(x))=x, and it's still x after composing P n times.



User Andrew Khmylov
by
8.1k points
2 votes

10) The only thing I can provide to help you is:

f°ⁿ(x) = f(f°ⁿ⁻¹(x))

Hopefully, that can help you to figure out the answer

*********************************************************************************

11) Answer: f(15) = 20, f(16) = 5, f(17) = -15, f(18) = -20, f(19) = -5

Step-by-step explanation:

f(x) = f(x + 1) + f(x - 1) f(20) = 15

f(15) - 5 = 15 ⇒ f(15) = 20

f(16) = f(16 + 1) + f(16 - 1)

f(16) = f(17) + f(15)

f(16) = f(17) + 20

f(17) = f(17 + 1) + f(17 - 1)

f(17) = f(18) + f(16)

f(17) = f(18) + f(17) + 20

0 = f(18) + 20

-20 = f(18)

f(19) = f(19 + 1) + f(19 - 1)

f(19) = f(20) + f(18)

f(19) = 15 + -20

f(19) = -5

f(18) = f(18 + 1) + f(18 - 1)

f(18) = f(19) + f(17)

-20 = -5 + f(17)

-15 = f(17)

f(16) = f(17) + 20

f(16) = -15 + 20

f(16) = 5

*****************************************************************************************

12a) Answer: 0

Step-by-step explanation:

f(m - n) + f(m + n) =
(1)/(2)f(2m) +
(1)/(2)f(2n)

  • m - n = 0 ⇒ m = n

f(0) + f(2m) =
(1)/(2)f(2(m)) +
(1)/(2)f(2(m))

f(0) + f(2m) = f(2m)

f(0) = 0

*****************************************************************************************

12b) Answer: f(2) = 4, f(3) =
(1)/(2)f(4) + 1

Step-by-step explanation:

f(m - n) + f(m + n) =
(1)/(2)f(2m) +
(1)/(2)f(2n)

Let m = 1 and n = 0, then

f(1 - 0) + f(1 + 0) =
(1)/(2)f(2(1)) +
(1)/(2)f(2(0))

f(1) + f(1) =
(1)/(2)f(2) +
(1)/(2)f(0)

2f(1) =
(1)/(2)f(2) +
(1)/(2)(0)

2f(1) =
(1)/(2)f(2)

2[1] =
(1)/(2)f(2)

(2)2 = (2)
(1)/(2)f(2)

4 = f(2)

Let m = 2 and n = 1, then

f(2 - 1) + f(2 + 1) =
(1)/(2)f(2(2)) +
(1)/(2)f(2(1))

f(1) + f(3) =
(1)/(2)f(4) +
(1)/(2)f(2)

1 + f(3) =
(1)/(2)f(4) +
(1)/(2)(4)

1 + f(3) =
(1)/(2)f(4) + 2

f(3) =
(1)/(2)f(4) + 1


User Svaor
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories