10) The only thing I can provide to help you is:
f°ⁿ(x) = f(f°ⁿ⁻¹(x))
Hopefully, that can help you to figure out the answer
*********************************************************************************
11) Answer: f(15) = 20, f(16) = 5, f(17) = -15, f(18) = -20, f(19) = -5
Step-by-step explanation:
f(x) = f(x + 1) + f(x - 1) f(20) = 15
f(15) - 5 = 15 ⇒ f(15) = 20
f(16) = f(16 + 1) + f(16 - 1)
f(16) = f(17) + f(15)
f(16) = f(17) + 20
f(17) = f(17 + 1) + f(17 - 1)
f(17) = f(18) + f(16)
f(17) = f(18) + f(17) + 20
0 = f(18) + 20
-20 = f(18)
f(19) = f(19 + 1) + f(19 - 1)
f(19) = f(20) + f(18)
f(19) = 15 + -20
f(19) = -5
f(18) = f(18 + 1) + f(18 - 1)
f(18) = f(19) + f(17)
-20 = -5 + f(17)
-15 = f(17)
f(16) = f(17) + 20
f(16) = -15 + 20
f(16) = 5
*****************************************************************************************
12a) Answer: 0
Step-by-step explanation:
f(m - n) + f(m + n) =
f(2m) +
f(2n)
f(0) + f(2m) =
f(2(m)) +
f(2(m))
f(0) + f(2m) = f(2m)
f(0) = 0
*****************************************************************************************
12b) Answer: f(2) = 4, f(3) =
f(4) + 1
Step-by-step explanation:
f(m - n) + f(m + n) =
f(2m) +
f(2n)
Let m = 1 and n = 0, then
f(1 - 0) + f(1 + 0) =
f(2(1)) +
f(2(0))
f(1) + f(1) =
f(2) +
f(0)
2f(1) =
f(2) +
(0)
2f(1) =
f(2)
2[1] =
f(2)
(2)2 = (2)
f(2)
4 = f(2)
Let m = 2 and n = 1, then
f(2 - 1) + f(2 + 1) =
f(2(2)) +
f(2(1))
f(1) + f(3) =
f(4) +
f(2)
1 + f(3) =
f(4) +
(4)
1 + f(3) =
f(4) + 2
f(3) =
f(4) + 1