3.8k views
1 vote
What is the measure of 0(theta) in radians if r=3 & the area is 3pi/2?

User Christa
by
5.3k points

1 Answer

4 votes

Answer:


\boxed{\boxed{\theta=(\pi)/(3)}}

Step-by-step explanation:

Hint -


\text{Arc length}=r\theta\\\\\text{Area of the sector}=(1)/(2)r^2\theta

Given here that,


\theta=??\\\\r=3\\\\Area=(3)/(2)\pi

So, putting all the values in the formula,


\Rightarrow \text{Area of the sector}=(1)/(2)r^2\theta


\Rightarrow (3)/(2)\pi=(1)/(2)(3)^2\theta


\Rightarrow 3\pi=(3)^2\theta


\Rightarrow 3\pi=9\theta


\Rightarrow \theta=(3\pi)/(9)


\Rightarrow \theta=(\pi)/(3)

User Jibysthomas
by
5.3k points