For 14, I think the definition of the absolute value will make things easier. Recall that
![|x|=\begin{cases}x&\text{for }x\ge0\\-x&\text{for }x<0\end{cases}](https://img.qammunity.org/2019/formulas/mathematics/college/z8wnawhmjqhj7pav083b9qwm7dxlke0stq.png)
So we have
![|x-3|=\begin{cases}x-3&\text{for }x\ge3\\3-x&\text{for }x<3\end{cases}](https://img.qammunity.org/2019/formulas/mathematics/college/zo26hpzk12c47ew4qvmpttfpqh6nq8yca6.png)
![|x+1|=\begin{cases}x+1&\text{for }x\ge-1\\-x-1&\text{for }x<-1\end{cases}](https://img.qammunity.org/2019/formulas/mathematics/college/jg4hcpql6ohpauxvriglvff4r3x8okceda.png)
Putting these together, we have 3 different cases to consider:
![f(x)=\begin{cases}(3-x)-2(-x-1)=x+5&\text{for }x<-1\\(3-x)-2(x+1)=1-3x&\text{for }-1\le x<3\\(x-3)-2(x+1)=-x-5&\text{for }x\ge3\end{cases}](https://img.qammunity.org/2019/formulas/mathematics/college/4hy5ard9qz7ns375jp5ww8yqzyst03gmm7.png)
Then we check the derivative, noting that we shouldn't expect the derivative to be continuous at
and
, so we ignore those exact cases:
![f'(x)=\begin{cases}1&\text{for }x<-1\\-3&\text{for }-1<x<3\\-1&\text{for }x>3\end{cases}](https://img.qammunity.org/2019/formulas/mathematics/college/z2i5idl42w4putu2tvob6h9mll6rp83hdj.png)
This tells us that
is increasing on
and decreasing on
. We know that
and
, but if we can verify that
is continuous at
, then we can use the trends from the derivative test above to show there's at least a local maximum at that point.
We have
, while
![\displaystyle\lim_(x\to-1^-)f(x)=\lim_(x\to-1)x+5=4](https://img.qammunity.org/2019/formulas/mathematics/college/slehpv05wcsw06jw2qynn3ky7s4id4sp4r.png)
![\displaystyle\lim_(x\to-1^+)f(x)=\lim_(x\to-1)1-3x=4](https://img.qammunity.org/2019/formulas/mathematics/college/eywaud57kywslvh66hf8n8nkrerb9kdgt4.png)
so
is indeed continuous. So,
is an absolute maximum and
is an absolute minimum.
For 15, the fact that
is differentiable and attains an extreme value at
means that
exists, and that
. Then for part (a),
![g(2)=2f(2)+1=1](https://img.qammunity.org/2019/formulas/mathematics/college/d61n73gidyll9ewe18avfzylek2e37dzfb.png)
![h(2)=2f(2)+2+1=3](https://img.qammunity.org/2019/formulas/mathematics/college/x0yagzjpaelzd3onjicw0ih964898zzi79.png)
![g'(2)=f(2)+2f'(2)=0](https://img.qammunity.org/2019/formulas/mathematics/college/ujzdhzlwudjpmqpxa0lx3yz8rdk1a82xks.png)
![h'(2)=f(2)+2f'(2)+1=1](https://img.qammunity.org/2019/formulas/mathematics/college/rtpy92868b576cf42qivz051an6sf16nug.png)
For part (b), in order for
or
to have extreme values at
, we would need to have
(which is true, as shown above) and
(which is not).