232k views
5 votes
I can't figure out how to solve this: sec^2x-1/sec^2

I am very rusty on my fraction skills, can anyone recommend a video I can watch that explains how to solve fractions?

1 Answer

5 votes

Answer: sin²θ

Step-by-step explanation:

First, convert sec into
(1)/(cos), then use identity (cos²θ + sin²θ = 1) and simplify:


(sec^(2)\theta - 1)/(sec^(2)\theta)

=
(sec^(2)\theta - 1)/(1)*(1)/(sec^(2)\theta)

=
((1)/(cos^(2)\theta) - 1)*((sec^(2)\theta)/(1))

=
((1)/(cos^(2)\theta) - (cos^(2)\theta)/(cos^(2)\theta))*((cos^(2)\theta)/(1))

=
((1 - cos^(2)\theta)/(cos^(2)\theta))*((cos^(2)\theta)/(1))

=
((sin^(2)\theta)/(cos^(2)\theta))*((cos^(2)\theta)/(1))

=
(sin^(2)\theta*cos^(2)\theta)/(cos^(2)\theta)

= sin²θ


User Camcam
by
8.4k points

No related questions found