98.9k views
23 votes
3 rays have common vertex. All the angles, which are made by neighbor rays( I think they mean adjacent rays), can be:

a)acute
b)obtuse
c)right
d)none of it.

btw I checked answer, but I still didn't understand, so I need explanation.​

User Dani Vijay
by
4.0k points

1 Answer

8 votes

Answer:


b)\ Obtuse

Explanation:


We\ are\ given\ that:\\There\ are\ three\ rays.\\Lets\ mark\ them\ Ray\ OP, OQ,\ and\ OR\ with\ their\ common\ Vertex\ O.\\\\Now,\\We\ know\ that\ the\ sum\ of\ all\ angles\ around\ a\ point[or\ here\ Vertex\ O]\\ should\ be\ equal\ to\ 360.\\Here,\\\\Lets\ consider\ each\ case\ sepearately.\\If\ all\ the\ angles\ formed: \angle POR, \angle ROQ, \angle POQ,\ are\ acute\ then:\\\angle POR, \angle ROQ, \angle POQ<90\\If\ we\ add\ them\ together,


\angle POR+ \angle ROQ+ \angle POQ<90+90+90<270


But\ here\ the\ sum\ of\ the\ angles\ are\ less\ than\ 270,\ but\ the\ sum\ should\\ instead\ be\ 360.\\Hence,\ the\ angles\ formed\ by\ the\ rays\ are\ NOT\ acute.


Similarly,\\If\ all\ the\ angles\ formed: \angle POR, \angle ROQ, \angle POQ,\ are\ right\ then:\\\angle POR, \angle ROQ, \angle POQ =90\\When\ we\ add\ them\ again:\\\angle POR+ \angle ROQ+ \angle POQ=90+90+90=270\\But\ again\ the\ sum\ here\ is\ equal\ to\ 270,\ but\ instead\ the\ sum\ had\ to\\ be\ equal\ to\ 360.\\Hence,\\The\ angles\ formed\ are\ NOT\ right.


Lets\ consider\ the\ Last\ Case,\\If\ the\ angles\ formed: \angle POR, \angle ROQ, \angle POQ\ are\ obtuse,\\\angle POR, \angle ROQ, \angle POQ>90\\When\ we\ add\ them:\\\angle POR+ \angle ROQ+ \angle POQ>(90+90+90)>270\\Here,\\The\ angles\ formed\ are\ greater\ than\ 270.\ As\ 360>270,\ the\ angles\ ARE\\ obtuse.

User Paul Denisevich
by
4.2k points