104k views
5 votes
Find all exact solutions that exist on the interval [0, 2π).

1 − 2 tan(ω) = tan2(ω)

w =

User Ramraj
by
7.9k points

1 Answer

5 votes

A possible solution: First add 1 to both sides and reduce the RHS via the Pytagorean identity.


1-2\tan\omega=\tan^2\omega\implies2-2\tan\omega=1+\tan^2\omega=\sec^2\omega

Rewrite
\tan and
\sec in terms of
\sin and
\cos:


\implies2\left(1-(\sin\omega)/(\cos\omega)\right)=\frac1{\cos^2\omega}

Multiply both sides by
\cos^2\theta:


\implies2(\cos^2\omega-\sin\omega\cos\omega)=1


\implies2\cos^2\omega-1=2\sin\omega\cos\omega

Use the double angle identities:


\implies\cos2\omega=\sin2\omega

Divide both sides by
\cos2\omega:


\implies1=(\sin2\omega)/(\cos2\omega)=\tan2\omega

Now,
\tan2\omega=1 for
2\omega=\frac\pi4+n\pi, or
\omega=\frac\pi8+\frac{n\pi}2, where
n is any integer.
\omega will fall in the interval
[0,2\pi) for
n=1,2,3,4, which means we have


\omega=\frac\pi8,\frac{5\pi}8,\frac{9\pi}8,\frac{13\pi}8

User Jamie Hutber
by
9.2k points