7.3k views
1 vote
Simplify the following exponential expression. Show your work step by step and list the Properties of Exponents used to solve this problem next to your work.

3x^{0}(2x^{3}t^{2})^{4}
___________________
(4x^{7}y^{4})^{2}

User Sofi
by
6.9k points

2 Answers

7 votes

Given problem is



(3x^0(2x^3t^2)^4)/((4x^7y^4)^2)

distribute outer exponents using formula:
(a^mb^n)^c=a^(mc)b^(nc), we get:



=(3x^0(2^4x^(3\cdot4)t^(2\cdot4)))/(4^2x^(7\cdot2)y^(4\cdot2))

Simplify exponents:


=(3x^0(2^4x^(12)t^8))/(4^2x^(14)y^8)

plug
x^0=1


=(3\cdot1(2^4x^(12)t^8))/(4^2x^(14)y^8)

simplify exponents


=(3(16x^(12)t^8))/(16x^(14)y^8)

simplify (closure property)


=(48x^(12)t^8)/(16x^(14)y^8)

simplify exponent part using formula :
(a^m)/(a^n)=a^(\left(m-n\right)) we get:


=(3x^(\left(12-14\right))t^8)/(y^8)

Simplify exponents:


=(3x^(\left(-2\right))t^8)/(y^8)

send term to denominator to avoid negative exponent


=(3t^8)/(x^2y^8)

Hence final answer is
(3t^8)/(x^2y^8).


User Nandhos
by
8.1k points
2 votes


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3(1)(2)^4(x^3)^4(t^2)^4)/((4)^2(x^7)^2(y^4)^2) Since,
a^0 = 1 and
(ab)^m=a^mb^m


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3(16)x^(12)t^(8))/(16x^(14)y^8) Since,
(a^b)^c=a^(bc)


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3t^(8))/(x^(14-12)y^8)


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3t^(8))/(x^(2)y^8)

Thus,


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3t^(8))/(x^(2)y^8)

User James Gray
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories