7.3k views
1 vote
Simplify the following exponential expression. Show your work step by step and list the Properties of Exponents used to solve this problem next to your work.

3x^{0}(2x^{3}t^{2})^{4}
___________________
(4x^{7}y^{4})^{2}

User Sofi
by
6.9k points

2 Answers

7 votes

Given problem is



(3x^0(2x^3t^2)^4)/((4x^7y^4)^2)

distribute outer exponents using formula:
(a^mb^n)^c=a^(mc)b^(nc), we get:



=(3x^0(2^4x^(3\cdot4)t^(2\cdot4)))/(4^2x^(7\cdot2)y^(4\cdot2))

Simplify exponents:


=(3x^0(2^4x^(12)t^8))/(4^2x^(14)y^8)

plug
x^0=1


=(3\cdot1(2^4x^(12)t^8))/(4^2x^(14)y^8)

simplify exponents


=(3(16x^(12)t^8))/(16x^(14)y^8)

simplify (closure property)


=(48x^(12)t^8)/(16x^(14)y^8)

simplify exponent part using formula :
(a^m)/(a^n)=a^(\left(m-n\right)) we get:


=(3x^(\left(12-14\right))t^8)/(y^8)

Simplify exponents:


=(3x^(\left(-2\right))t^8)/(y^8)

send term to denominator to avoid negative exponent


=(3t^8)/(x^2y^8)

Hence final answer is
(3t^8)/(x^2y^8).


User Nandhos
by
8.1k points
2 votes


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3(1)(2)^4(x^3)^4(t^2)^4)/((4)^2(x^7)^2(y^4)^2) Since,
a^0 = 1 and
(ab)^m=a^mb^m


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3(16)x^(12)t^(8))/(16x^(14)y^8) Since,
(a^b)^c=a^(bc)


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3t^(8))/(x^(14-12)y^8)


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3t^(8))/(x^(2)y^8)

Thus,


(3x^0(2x^3t^2)^4)/((4x^7y^4)^2) = (3t^(8))/(x^(2)y^8)

User James Gray
by
9.1k points

No related questions found