145k views
1 vote
Find f '(−3), if f(x) = (2x^2 − 7x)(−x^2 − 7). Round your answer to the nearest integer. Use the hyphen symbol, -, for negative values.

User Pahnev
by
8.3k points

2 Answers

3 votes

Answer:
f'(-3)=538

Step by step:

To get the derivative you can either multiply out the product (which I did below), or apply the formula for the derivative of a product of two functions. Either way you will obtain the same result, of course.


f(x) = (2x^2-7x)(-x^2-7)=-2 x^4 + 7 x^3 - 14 x^2 + 49 x\\f'(x) = -8x^3 +21x^2 - 28x +49\\f'(-3)=538

User Aprilmintacpineda
by
8.7k points
2 votes

use product rule


(d)/(dx) g(x)h(x)=g'(x)h(x)+g(x)h'(x) (where the ' symbol is derivitive with respect to x, (just using Leibniz notation)


also remember the power rule:
(d)/(dx) x^n=nx^(n-1)

and sum rule,
(d)/(dx) (g(x)+h(x))=(d)/(dx)g(x)+(d)/(dx)h(x)


so first find the derivitive then evaluate it

if we say that
2x^2-7x=g(x) and
-x^2-7=h(x)

setup:

find g'(x) and h'(x)


g'(x)=2*2x^1-7*1x^0=4x-7*1=4x-7


h'(x)=2*(-x^1)-0=-2x


so
f'(x)=g'(x)h(x)+g(x)h'(x)=(4x-7)(-x^2-7)+(2x^2-7x)(-2x)

evaluate f'(-3)


f'(-3)=(4(-3)-7)(-(-3)^2-7)+(2(-3)^2-7(-3))(-2(-3))


f'(-3)=(-19)(-16)+(39)(6)


f'(-3)=538



answer: f'(-3)=538

User Sean Chambers
by
7.7k points