Answer : The standard reduction potential,
is -0.13 V.
Solution : Given,
![E^o_((Ni^(2+)/Ni))=-0.28V](https://img.qammunity.org/2019/formulas/chemistry/high-school/s7yjdtxvjltul3pqaqiimnxp41gsuulwku.png)
(1 KJ = 1000 J)
The net reaction is,
![3Ni^(2+)(aq)+2Cr(OH)_3(s)+10OH^-(aq)\rightarrow 3Ni(s)+2CrO^(2-)_4(aq)+8H_2O(l)](https://img.qammunity.org/2019/formulas/chemistry/high-school/x285dmxiu2mu8f1a8p5rsf5jbijpql99es.png)
The half cell reactions are :
At cathode :
![E^o_((Ni^(2+)/Ni))=-0.28V](https://img.qammunity.org/2019/formulas/chemistry/high-school/s7yjdtxvjltul3pqaqiimnxp41gsuulwku.png)
At anode :
![E^o_((Cr^(+6)/Cr^(+3)))=?](https://img.qammunity.org/2019/formulas/chemistry/high-school/cid8xkyq4r1ir1efxajbxdi93fbi0q8bia.png)
First we have to calculate the
by using formula,
![\Delta G^o=-nFE^o_(cell)](https://img.qammunity.org/2019/formulas/chemistry/high-school/ne9i333zzudjs1hrwdxyfoypd7r8hfg2yo.png)
where,
= Gibbs's free energy
n = number of electrons in a net chemical reaction = 6 electrons
F = Faraday constant = 96485 C
= standard cell potential
Now put all the given values in this formula, we get
![+87000KJ/mole=-6* (96485)* E^o_(cell)\\E^o_(cell)=-0.15V](https://img.qammunity.org/2019/formulas/chemistry/high-school/y6dlvt6do7qyj7fp7xbopmazm7cc9vjp6z.png)
Now we have to calculate the
by using formula,
![E^o_(cell)=E^o_(cathode)-E^o_(anode)](https://img.qammunity.org/2019/formulas/chemistry/high-school/pftk5h8gedbq9v5e3yo2x9pcb48u3rkw8d.png)
![E^o_(cell)=E^o_((Ni^(2+)/Ni))-E^o_((Cr^(+6)/Cr^(+3)))](https://img.qammunity.org/2019/formulas/chemistry/high-school/86wcp6bwksclrrlyl3qqsilgrj45syc029.png)
Now put all the given values in this formula, we get
![-0.15V=-0.28V-E^o_((Cr^(+6)/Cr^(+3)))](https://img.qammunity.org/2019/formulas/chemistry/high-school/3sklq0c4emb8ka5utgpn4u15u2is2ngrok.png)
![E^o_((Cr^(+6)/Cr^(+3)))=-0.13V](https://img.qammunity.org/2019/formulas/chemistry/high-school/tucyio20x5drnyhsivqrn129kln3efr43l.png)
Therefore, the standard reduction potential,
is -0.13 V.