131k views
5 votes

y=f(x^2)\\f'(x)=√(5x-1)\\

What is
(dy)/(dx)?

User Kaleigh
by
8.0k points

2 Answers

6 votes

use chain rule

remember that
(d)/(dx) g(h(x))=g'(h(x))h'(x) (mixing Lagrange's notation and Leibniz's notation)



(dy)/(dx)=


(d)/(dx)y=


(d)/(dx)f(x^2)=


if we treat f(x) as g(x) and
x^2 as h(x) then setup parts


f'(x)=√(5x-1) (given) so
f'(x^2)=√(5x^2-1)

and h'(x)=
(d)/(dx)x^2=2x


(d)/(dx)y=


(√(5x^2-1))(2x)=


2x√(5x^2-1)


answer:
(dy)/(dx)=2x√(5x^2-1)


User GianFS
by
8.3k points
5 votes

Answer:
(dy)/(dx)=√(20x^3-4x)

Step by step:

For better understanding I am using a new variable z instead of original x and then substitute x^2 for z. This makes the use of the chain rule clearer. Let me know if you have questions.


y=f(z)\\f'(z)=(dy)/(dz)=√(5z-1)\\(dy)/(dx)=(dy)/(dz)(dz)/(dx)\\z=x^2\\y=f(x^2)\\(dy)/(dx)=f'(x^2)(d(x^2))/(dx)\\(dy)/(dx)=√(5x^2-1)\cdot2x\\(dy)/(dx)=√(20x^3-4x)

User Ruben Vermeersch
by
8.2k points

No related questions found