Answer:
see explanation
Explanation:
Given f(x) then the derivative f'(x) is
f'(x) = lim(h tends to 0 )
![(f(x+h)-f(x))/(h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/83opnaxjuzu76zwksptdd0qptqrti95rt7.png)
= lim ( h to 0 )
![(4(x+h)^2-2-(4x^2-2))/(h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tv4sxyoutxletm27mn6msotmojardrtk4g.png)
= lim ( h to 0 )
![(4(x+h)^2-2-4x^2+2)/(h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q0aa0ilid44ve9qt3en20fx8pj33dkvh0d.png)
= lim( h to 0 )
![(4x^2+8hx+4h^2-4x^2)/(h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4jq7lsxrjtk94iarg1d5gajjn0zrojw8cc.png)
= lim( h to 0 )
![(8hx+4h^2)/(h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jzvzugkdre6znyxc5e1hso675nh6op3ymp.png)
= lim ( h to 0 )
← cancel h on numerator/ denominator
= lim ( h to 0 ) 4(2x + h) ← let h go to zero
f'(x) = 8x