30.9k views
4 votes
What is the extraneous solution to sqrt 2p+1+2 sqrt p=1

User Jacqulyn
by
5.1k points

2 Answers

4 votes

Answer:

p = 4

Explanation:

User Eden Moshe
by
5.5k points
3 votes

Given equation:
√(2p+1)+2√(p)=1.


\mathrm{Subtract\:}2√(p)\mathrm{\:from\:both\:sides}


√(2p+1)+2√(p)-2√(p)=1-2√(p)


√(2p+1)=1-2√(p)


\mathrm{Square\:both\:sides}


\left(√(2p+1)\right)^2=\left(1-2√(p)\right)^2


2p+1=1-4√(p)+4p


\mathrm{Subtract\:}1+4p\mathrm{\:from\:both\:sides}


2p+1-\left(1+4p\right)=1-4√(p)+4p-\left(1+4p\right)


-2p=-4√(p)


\left(-2p\right)^2=\left(-4√(p)\right)^2


4p^2=16p


4p^2-16p=0

Factoring out 4p, we get


4p(p-4) =0

4p=0 and p-4 =0

p=0 and p=4.


\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}√(2p+1)+2√(p)=1


\mathrm{Plug}\quad p=4:\quad √(2\cdot \:4+1)+2√(4)=1\quad \Rightarrow \quad \mathrm{False}


\mathrm{Plug}\quad p=0:\quad √(2\cdot \:0+1)+2√(0)=1\quad \Rightarrow \quad \mathrm{True}

Therefore, x=4 is the extraneous solution to the given equation.



User Dontoo
by
5.1k points