42.2k views
5 votes
What is y=4x^2-9x+1 in vertex form

User Telma
by
6.0k points

1 Answer

7 votes

Answer:


y = 4 \left(x - (9)/(8) \right)^2 - (65)/(16)

Explanation:


y = 4x^2 - 9x + 1

You need to complete the square on the right side.


y = (4x^2 - 9x) + 1


y = 4(x^2 - (9)/(4)x) + 1


y = 4 \left( x^2 - (9)/(4)x + \left( (9)/(8) \right)^2 \right) + 1 - 4\left( (9)/(8) \right)^2


y = 4 \left(x - (9)/(8) \right)^2 + 1 - 4 \left( (81)/(64) \right)


y = 4 \left(x - (9)/(8) \right)^2 + 1 - (81)/(16)


y = 4 \left(x - (9)/(8) \right)^2 + (16)/(16) - (81)/(16)


y = 4 \left(x - (9)/(8) \right)^2 - (65)/(16)

User Montells
by
5.6k points