Answer:
(x, y, z) = (0, 0, 3)
Explanation:
The augmented matrix for the system is ...
![\left[\begin{array}{cccc}4&1&-2&-6\\2&-3&3&9\\1&-2&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/w6ex17i9aplu2sq0kevhm492g110t2666w.png)
Subtract 4 times the 3rd row from the first row.
![\left[\begin{array}{cccc}0&9&-2&-6\\2&-3&3&9\\1&-2&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/2umpaeox0yyfa3m3wtgc0a4hny0jqm863u.png)
Subtract 2 times the 3rd row from the second row.
![\left[\begin{array}{cccc}0&9&-2&-6\\0&1&3&9\\1&-2&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/ft1ii7qsarjw8j7tht2v5fnjzjfbm9u7sh.png)
Subtract 9 times the 2nd row from the first row.
![\left[\begin{array}{cccc}0&0&-29&-87\\0&1&3&9\\1&-2&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/lv8y7newzkwa3ngnwuq0yxhxtjka9eafas.png)
Now, the first row can be divided by -29 to give ...
![\left[\begin{array}{cccc}0&0&1&3\\0&1&3&9\\1&-2&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/73qji5saxqerekfb8rfu4t8zsghcyxgl6s.png)
You can subtract 3 times this first row from the second row to get ...
![\left[\begin{array}{cccc}0&0&1&3\\0&1&0&0\\1&-2&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/hclsvu45fvswbcx6vpzgj1mod55wponrhm.png)
And add 2 times the second row to the third to get ...
![\left[\begin{array}{cccc}0&0&1&3\\0&1&0&0\\1&0&0&0\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/hgskqnvxaqj3az3r76ieyt32dzudfzpruu.png)
This matrix now tells you (x, y, z) = (0, 0, 3).