ANSWER
![(n^4-10n^2+24)/(n^4-9n^2+18)=((n-2)(n+2))/((n-√(3))(n+√(3)))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/angsxmqgq9p578uxp2e62g7gpqt5mfatpy.png)
For
![n\\e \pm√(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8c8swj7dhbp8h9i4xk3a7gdexg7mfvxp2n.png)
Step-by-step explanation
We have
![(n^4-10n^2+24)/(n^4-9n^2+18)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/a02ojyliyb1a4839n8onsnouvvl8mvxyvk.png)
This is very easy to simplify. We shall look at the two expressions from a quadratic trinomial perspective.
We rewrite the rational expression to obtain;
![(n^4-10n^2+24)/(n^4-9n^2+18)=((n^2)^2-10(n^2)+24)/((n^2)^2-9(n^2)+18)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/x15dffsqfgbkdnndtrbxnygqzgcgeig2og.png)
We can now see that both the numerator and denominator are quadratic trinomials in
.
We split the middle terms as follows;
![(n^4-10n^2+24)/(n^4-9n^2+18)=((n^2)^2-6n^2-4n^2+24)/((n^2)^2-6n^2-3n^2+18)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2e2mm86gjh3chjd5ybh59dmbwxcv9q4f46.png)
![(n^4-10n^2+24)/(n^4-9n^2+18)=(n^2(n^2-6)-4(n^2-6))/(n^2(n^2-6)-3(n^2-6))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/g1qfmteo2k4a6ut7qekdh3t2h2rvzt6wjk.png)
We factor further to obtain;
![(n^4-10n^2+24)/(n^4-9n^2+18)=((n^2-6)(n^2-4))/((n^2-6)(n^2-3))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jyc7e4izi6e53zhs7w434s9xjpdp4mh1a4.png)
We now cancel out common factors to get;
![(n^4-10n^2+24)/(n^4-9n^2+18)=((n^2-4))/((n^2-3))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/a4336wlg20oorico5r67w29nmynrqixdeb.png)
![(n^4-10n^2+24)/(n^4-9n^2+18)=((n-2)(n+2))/((n-√(3))(n+√(3)))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/angsxmqgq9p578uxp2e62g7gpqt5mfatpy.png)
For
![n\\e \pm√(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8c8swj7dhbp8h9i4xk3a7gdexg7mfvxp2n.png)