32.0k views
3 votes
A is the point (10,4) and B is the point (4,-6).

Find the distance of the midpoint AB from the origin

1 Answer

4 votes


\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ A(\stackrel{x_1}{10}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{4}~,~\stackrel{y_2}{-6}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{4+10}{2}~,~\cfrac{-6+4}{2} \right)\implies (7,-1) \\\\[-0.35em] \rule{34em}{0.25pt}



\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{\textit{origin}}{(\stackrel{x_1}{0}~,~\stackrel{y_1}{0})}\qquad \stackrel{\textit{midpoint of AB}}{(\stackrel{x_2}{7}~,~\stackrel{y_2}{-1})}\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ d=√((7-0)^2+(-1-0)^2)\implies d=√(7^2+(-1)^2) \\\\\\ d=√(48)\implies d\approx 6.93

User Ajmal Sha
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories