Answer:
All real numbers less than 5 satisfy the inequality. The set of solutions of the inequality is the interval
.
Therefore, -10, -5, -3, 0, 3 are all valid solutions.
Explanation:
Solving an inequality means finding all of its solutions. A solution of an inequality is a number which when substituted for the variable makes the inequality a true statement.
To find all the solutions for the inequality
you must:
![\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}\\-7x+14-14>-3x-6-14](https://img.qammunity.org/2019/formulas/mathematics/college/rf0oggk0r9k0r6bsigbuqazev9er4qr49n.png)
![\mathrm{Simplify}\\-7x>-3x-20](https://img.qammunity.org/2019/formulas/mathematics/college/554ri8f22g71zijawf6f2d1nr6ttxbguzi.png)
![\mathrm{Add\:}3x\mathrm{\:to\:both\:sides}\\-7x+3x>-3x-20+3x](https://img.qammunity.org/2019/formulas/mathematics/college/ehpwxehwdboxw0tir2vvl3mib2lp55vux6.png)
![\mathrm{Simplify}\\-4x>-20](https://img.qammunity.org/2019/formulas/mathematics/college/21x080q64g4olot6vhucmpinnc1bbr3qui.png)
![\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}\\\left(-4x\right)\left(-1\right)<\left(-20\right)\left(-1\right)](https://img.qammunity.org/2019/formulas/mathematics/college/num84jqcog02f7l4kicqnyp62ydf6mip3k.png)
![\mathrm{Simplify}\\\\4x<20\\\\(4x)/(4)<(20)/(4)\\\\x<5](https://img.qammunity.org/2019/formulas/mathematics/college/3ipgsnh8edk3wxaufne54ubbnndqt8m11z.png)
All real numbers less than 5 satisfy the inequality. The set of solutions of the inequality is the interval
.
Therefore, -10, -5, -3, 0, 3 are all valid solutions.