219k views
1 vote
Determine the quadratic regression for the data.

(1,5) (3,4) (4,1) (5,2) (7,4)
Explain how you got your answers. Round to the nearest hundredth.

2 Answers

3 votes

{ solution is attached below}

Determine the quadratic regression for the data. (1,5) (3,4) (4,1) (5,2) (7,4) Explain-example-1
Determine the quadratic regression for the data. (1,5) (3,4) (4,1) (5,2) (7,4) Explain-example-2
Determine the quadratic regression for the data. (1,5) (3,4) (4,1) (5,2) (7,4) Explain-example-3
User Puckhead
by
7.5k points
2 votes

Answer:


y = 0.27\cdot x^(2) - 2.44\cdot x + 7.49

Step-by-step explanation: The quadratic regression is given by :


y = a\cdot x^(2) +b\cdot x + c

In order to get the quadratic regression equation we need to simplify :


a\cdot \sum {x_i}^(4)+b\cdot \sum {x_i}^(3)+c\cdot \sum {x_i}^(2)=\sum {x_(i)}^(2)\cdot y_(i)\\a\cdot \sum {x_i}^(3)+b\cdot \sum {x_i}^(2)+c\cdot \sum {x_i}=\sum {x_(i)}\cdot y_(i)\\a\cdot \sum {x_i}^(2)+b\cdot \sum {x_i}+c\cdot {n_i}=\sum y_(i)


3364\cdot a+560\cdot b+100\cdot c=303\\560\cdot a +100\cdot b+20\cdot c=59\\100\cdot a +20\cdot b +5\cdot c=16

On solving this system of equation, we get a = 0.27 , b = - 2.44 , c = 7.49

Hence, the required quadratic regression is
y = 0.27\cdot x^(2) - 2.44\cdot x + 7.49



User Pavel Tiunov
by
8.2k points

No related questions found