181k views
0 votes
Write the expression as a complex number in standard form.
4-3i/2i

1 Answer

3 votes


\bf \stackrel{\textit{recall that}}{i^2=-1} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{4-3i}{2i}\cdot \cfrac{i}{i}\implies \cfrac{(4-3i)(i)}{2i^2}\implies \cfrac{4i-3i^2}{2i^2}\implies \cfrac{4i-3(-1)}{2(-1)} \\\\\\ \cfrac{4i+3}{-2}\implies \cfrac{4i}{-2}+\cfrac{3}{-2}\implies -2i-\cfrac{3}{2}\implies -\cfrac{3}{2}-2i

User Evgeniy Zaykov
by
8.4k points

No related questions found