Answer:
The value of x in NLM is 13.
Explanation:
We have a triangle NLM where,
angle M=(4x-4),
angle L=(3x+12); and
angle N=(6x+3).
We know that the sum of angles of a triangle = 180° so we will add these angles and put them equal to 180 to solve for x:
![(4x-4) + (3x+12)+(6x+3)=180](https://img.qammunity.org/2019/formulas/mathematics/high-school/uqvfec48g7ob03embtg7ne2e4rfssjco05.png)
![4x+3x+6x+12+3-4=180](https://img.qammunity.org/2019/formulas/mathematics/high-school/7z0pxwpr1a9dgm8tjn20boiht86sy3qop6.png)
![13x=180-11](https://img.qammunity.org/2019/formulas/mathematics/high-school/8557q20otswxajzt5un48rsl3kggtlw3uv.png)
![13x=169](https://img.qammunity.org/2019/formulas/mathematics/high-school/ve2mafpzz5dzedz2nbgr59hzbkw52ca2u5.png)
![x=13](https://img.qammunity.org/2019/formulas/mathematics/middle-school/h9stq0a7tl3tgj57bx8thnehintfilur39.png)
Therefore, the value of x in triangle NLM is equal to 13.