Answer:
G'(1,7), H'(-8,1), I'(-4,-5)
Explanation:
The transformation matrix for reflection across the y-axis is an identity matrix with the x-multiplier negated:
![\left[\begin{array}{cc}-1&0\\0&1\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/l0cup0m324v8sx032hphp0dk07gpgca3vo.png)
Multiplying the coordinates by this gives ...
![\left[\begin{array}{cc}-1&0\\0&1\end{array}\right]\cdot\left[\begin{array}{ccc}-1&8&4\\7&1&-5\end{array}\right]=\left[\begin{array}{ccc}1&-8&-4\\7&1&-5\end{array}\right]](https://img.qammunity.org/2019/formulas/mathematics/college/riuh9ykjod95g25qxbk2ryxw5cwf6z6uo9.png)
That is, the reflected points are G'(1,7), H'(-8,1), I'(-4,-5).