215k views
5 votes
In △ABC, the coordinates of vertices A and B are A(−2,4) and B(−1,1).

For each of the given coordinates of vertex C, is △ABC a right triangle?



Select Right Triangle or Not a Right Triangle for each set of coordinates.

In △ABC, the coordinates of vertices A and B are A(−2,4) and B(−1,1). For each of-example-1

2 Answers

3 votes

Answer:

For the given coordinates of vertex C of Option A and Option C ,△ABC is a right triangle.

Explanation:

Coordinates of A = (−2,4)

Coordinates of B =(−1,1)

Since we are asked For each of the given coordinates of vertex C, is △ABC a right triangle

So, Option 1)

Coordinates of C = (2,2)

Now to find length of AB, BC and AC

Distance formula:
d=√((x_2-x_1)^2+(y_2-y_1)^2)


(x_1,y_1)=(-2,4)


(x_2,y_2)=(-1,1)

Substitute the vales in the formula


AB=√((-1+2)^2+(1-4)^2)


AB=√(10)


(x_1,y_1)=(-1,1)


(x_2,y_2)=(2,2)

Substitute the vales in the formula


BC=√((2+1)^2+(2-1)^2)


BC=√(10)


(x_1,y_1)=(-2,4)


(x_2,y_2)=(2,2)

Substitute the vales in the formula


AC=√((2+2)^2+(2-4)^2)


AC=√(20)

So,
AB=√(10) ,
BC=√(10) and
AC=√(20)

Now to check whether it is a right angled triangle or not

We will use Pythagoras theorem


Hypotenuse^2=Perpendicular^2+Base^2


(√(20))^2=(√(10))^2+(√(10))^2


20=10+10


20=20

So, For Option 1 , △ABC is a right triangle.

Option 2)

Coordinates of C = (0,4)

Now to find length of AB, BC and AC

Distance formula:
d=√((x_2-x_1)^2+(y_2-y_1)^2)


(x_1,y_1)=(-2,4)


(x_2,y_2)=(-1,1)

Substitute the vales in the formula


AB=√((-1+2)^2+(1-4)^2)


AB=√(10)


(x_1,y_1)=(-1,1)


(x_2,y_2)=(0,4)

Substitute the vales in the formula


BC=√((0+1)^2+(4-1)^2)


BC=√(10)


(x_1,y_1)=(-2,4)


(x_2,y_2)=(0,4)

Substitute the vales in the formula


AC=√((0+2)^2+(4-4)^2)


AC=4

So,
AB=√(10) ,
BC=√(10) and
AC=4

Now to check whether it is a right angled triangle or not

We will use Pythagoras theorem


Hypotenuse^2=Perpendicular^2+Base^2


(4)^2=(√(10))^2+(√(10))^2


16=10+10


16 \\eq20

So, For Option 2, △ABC is not a right triangle.

Option 2)

Coordinates of C = (-2,1)

Now to find length of AB, BC and AC

Distance formula:
d=√((x_2-x_1)^2+(y_2-y_1)^2)


(x_1,y_1)=(-2,4)


(x_2,y_2)=(-1,1)

Substitute the vales in the formula


AB=√((-1+2)^2+(1-4)^2)


AB=√(10)


(x_1,y_1)=(-1,1)


(x_2,y_2)=(-2,1)

Substitute the vales in the formula


BC=√((-2+1)^2+(1-1)^2)


BC=1


(x_1,y_1)=(-2,4)


(x_2,y_2)=(-2,1)

Substitute the vales in the formula


AC=√((-2+2)^2+(1-4)^2)


AC=3

So,
AB=√(10) ,
BC=1 and
AC=3

We will use Pythagoras theorem


Hypotenuse^2=Perpendicular^2+Base^2


(√(10))^2=(3)^2+(1)^2


10=9+1


10=10

So, For Option 3, △ABC is a right triangle.

Hence For the given coordinates of vertex C of Option A and Option C ,△ABC is a right triangle.

User Package
by
5.3k points
1 vote

Given coordinates of vertices A and B are A(−2,4) and B(−1,1).

Slope of AB is :
m=(1-4)/(-1-\left(-2\right)) =-3.

With coordinate C(2,2).

Slope of BC is:
m=(1-4)/(-1-\left(-2\right))=-3

Slopes of AB and BC are same, therefore with C(2,2) is not a right triangle.

With coordinate C(0,4)

Slope of BC is
m=(4-1)/(0-\left(-1\right))=3.

Slopes of AB and BC are not negative reciprocals.

Therefore, C(0,4) also not a coordinate to make a right triangle.

With coordinate (-2,1)

Slope of BC is
m=(1-1)/(-2-\left(-1\right))=0

Therefore, C(-2,1) also not a coordinate to make a right triangle.

User Dkastl
by
5.7k points