Answer:
For the given coordinates of vertex C of Option A and Option C ,△ABC is a right triangle.
Explanation:
Coordinates of A = (−2,4)
Coordinates of B =(−1,1)
Since we are asked For each of the given coordinates of vertex C, is △ABC a right triangle
So, Option 1)
Coordinates of C = (2,2)
Now to find length of AB, BC and AC
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3fktmglj8sv0ehs8qd9rm7v2895ga3sa4x.png)
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cjykayy9n9kqqoiaam34dp3x492f4g7n98.png)
![(x_2,y_2)=(-1,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/gxs3jvm5j033bxs2qzmk467ceqs1otbw7k.png)
Substitute the vales in the formula
![AB=√((-1+2)^2+(1-4)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bhthw1bimmi3nut3a5d7sbaksnlhssr3of.png)
![AB=√(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/y2az3u1hiujvc029va1o5fasutbwbaytbj.png)
![(x_1,y_1)=(-1,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ihzckvcxquytvbtpxbakc14ia8ecl7cykd.png)
![(x_2,y_2)=(2,2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4wh5rj3gn96ijoqj4yt1qrjizldotccvk4.png)
Substitute the vales in the formula
![BC=√((2+1)^2+(2-1)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/st0e16x0kjnioztcdlsakijoc4npylacel.png)
![BC=√(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/zojenx4swh4rpaks3beuzjxxz5gkauy9u7.png)
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cjykayy9n9kqqoiaam34dp3x492f4g7n98.png)
![(x_2,y_2)=(2,2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4wh5rj3gn96ijoqj4yt1qrjizldotccvk4.png)
Substitute the vales in the formula
![AC=√((2+2)^2+(2-4)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/c9hdtlv7jpflw7engydd31mqijc2y41sxz.png)
![AC=√(20)](https://img.qammunity.org/2019/formulas/mathematics/high-school/9657qxzucc1ohv9p5s6z929if2sb2bkg7r.png)
So,
,
and
![AC=√(20)](https://img.qammunity.org/2019/formulas/mathematics/high-school/9657qxzucc1ohv9p5s6z929if2sb2bkg7r.png)
Now to check whether it is a right angled triangle or not
We will use Pythagoras theorem
![Hypotenuse^2=Perpendicular^2+Base^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/c7xgv714d2awbmjndnu2sdu2u86knvc80u.png)
![(√(20))^2=(√(10))^2+(√(10))^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/a68a12bwur8ya3o0c0q9x6pgb39nlp34zz.png)
![20=10+10](https://img.qammunity.org/2019/formulas/mathematics/high-school/x1tnryx4316edz87ulq8hrssniv7qp6kg2.png)
![20=20](https://img.qammunity.org/2019/formulas/mathematics/high-school/gxlnhnlm6p74u2zl91oxv5bznxpvs92fbz.png)
So, For Option 1 , △ABC is a right triangle.
Option 2)
Coordinates of C = (0,4)
Now to find length of AB, BC and AC
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3fktmglj8sv0ehs8qd9rm7v2895ga3sa4x.png)
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cjykayy9n9kqqoiaam34dp3x492f4g7n98.png)
![(x_2,y_2)=(-1,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/gxs3jvm5j033bxs2qzmk467ceqs1otbw7k.png)
Substitute the vales in the formula
![AB=√((-1+2)^2+(1-4)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bhthw1bimmi3nut3a5d7sbaksnlhssr3of.png)
![AB=√(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/y2az3u1hiujvc029va1o5fasutbwbaytbj.png)
![(x_1,y_1)=(-1,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ihzckvcxquytvbtpxbakc14ia8ecl7cykd.png)
![(x_2,y_2)=(0,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pr4gj9cbrhjfns9c48estr008hnd91x8el.png)
Substitute the vales in the formula
![BC=√((0+1)^2+(4-1)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mraky11jxi3cdz9uw3cqna3i03jceusx4a.png)
![BC=√(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/zojenx4swh4rpaks3beuzjxxz5gkauy9u7.png)
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cjykayy9n9kqqoiaam34dp3x492f4g7n98.png)
![(x_2,y_2)=(0,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pr4gj9cbrhjfns9c48estr008hnd91x8el.png)
Substitute the vales in the formula
![AC=√((0+2)^2+(4-4)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/np6apur3cm2rstwd7yi5hs22to6n505l25.png)
![AC=4](https://img.qammunity.org/2019/formulas/mathematics/high-school/8gxb5s76xer19j9rnxwrfdv9y931gp9xd9.png)
So,
,
and
![AC=4](https://img.qammunity.org/2019/formulas/mathematics/high-school/8gxb5s76xer19j9rnxwrfdv9y931gp9xd9.png)
Now to check whether it is a right angled triangle or not
We will use Pythagoras theorem
![Hypotenuse^2=Perpendicular^2+Base^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/c7xgv714d2awbmjndnu2sdu2u86knvc80u.png)
![(4)^2=(√(10))^2+(√(10))^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/zza407d79cuar7u06atkp9ff3rkpq6i207.png)
![16=10+10](https://img.qammunity.org/2019/formulas/mathematics/high-school/745w6524v0deculdzwfqj2vz9lzwp3sf9r.png)
![16 \\eq20](https://img.qammunity.org/2019/formulas/mathematics/high-school/3c90zk0q8uszk0nsj1s7b7v7mcskblti7y.png)
So, For Option 2, △ABC is not a right triangle.
Option 2)
Coordinates of C = (-2,1)
Now to find length of AB, BC and AC
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3fktmglj8sv0ehs8qd9rm7v2895ga3sa4x.png)
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cjykayy9n9kqqoiaam34dp3x492f4g7n98.png)
![(x_2,y_2)=(-1,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/gxs3jvm5j033bxs2qzmk467ceqs1otbw7k.png)
Substitute the vales in the formula
![AB=√((-1+2)^2+(1-4)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bhthw1bimmi3nut3a5d7sbaksnlhssr3of.png)
![AB=√(10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/y2az3u1hiujvc029va1o5fasutbwbaytbj.png)
![(x_1,y_1)=(-1,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ihzckvcxquytvbtpxbakc14ia8ecl7cykd.png)
![(x_2,y_2)=(-2,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/45kuxl1fsctkybl7xte22lcyzlhsrq9tko.png)
Substitute the vales in the formula
![BC=√((-2+1)^2+(1-1)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/roqon6qxuvwwvd3icmrgy4dwz0cyxpjd08.png)
![BC=1](https://img.qammunity.org/2019/formulas/mathematics/high-school/3p4vta02fr19bltn7adxw73eypki9n7g24.png)
![(x_1,y_1)=(-2,4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cjykayy9n9kqqoiaam34dp3x492f4g7n98.png)
![(x_2,y_2)=(-2,1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/45kuxl1fsctkybl7xte22lcyzlhsrq9tko.png)
Substitute the vales in the formula
![AC=√((-2+2)^2+(1-4)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/hzbdwz4tckdctcajtpzviy8y9zrapf2sv1.png)
![AC=3](https://img.qammunity.org/2019/formulas/mathematics/high-school/xq7lux40sdp2lnxmumlw3dq93ibmp7ibk6.png)
So,
,
and
![AC=3](https://img.qammunity.org/2019/formulas/mathematics/high-school/xq7lux40sdp2lnxmumlw3dq93ibmp7ibk6.png)
We will use Pythagoras theorem
![Hypotenuse^2=Perpendicular^2+Base^2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/c7xgv714d2awbmjndnu2sdu2u86knvc80u.png)
![(√(10))^2=(3)^2+(1)^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/ododrulc7ezp8kke6vx81dej2hb39eqh2g.png)
![10=9+1](https://img.qammunity.org/2019/formulas/mathematics/high-school/3symfp71k3rh59edw19ykm3fwdx6uswu4m.png)
![10=10](https://img.qammunity.org/2019/formulas/mathematics/high-school/ljd91v6huppyhik4ro7ozlulbte32xkks0.png)
So, For Option 3, △ABC is a right triangle.
Hence For the given coordinates of vertex C of Option A and Option C ,△ABC is a right triangle.