134k views
4 votes
Calculate the amount of heat necessary to raise the temperature of 135.0 g of water from 50.4°F to 85.0°F. The specific heat of water = 4.184 J/g·°C.

User Argeman
by
7.5k points

1 Answer

3 votes

Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.

10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F

The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).

Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.

On plugging the values we get:

H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C

Or, H = 10857.354 J or 10.857 kJ.

Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.

User Redwall
by
7.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.