Answer:
The total charge passing a given point in the conductor is 0.438 C.
Step-by-step explanation:
Given that,
The expression of current is
![i(t)=110\sin(120\pi t)](https://img.qammunity.org/2019/formulas/physics/college/axydo7nqvsef9sawhuf5xhhnqts8wsvl5h.png)
![(dq(t))/(t)=110\sin(120\pi t)](https://img.qammunity.org/2019/formulas/physics/college/z95021l8480bkrez5twnlqyi0uksr0pse8.png)
....(I)
We need to calculate the total charge
On integrating both side of equation (I)
![\int_(0)^(q)dq(t)=\int_(0)^{(1)/(180)}110\sin(120\pi t)dt](https://img.qammunity.org/2019/formulas/physics/college/swr99uipsk1z8ukscavn1oln155qkjirvo.png)
![q=110((-\cos(120\pi t))/(120\pi))_(0)^{(1)/(180)}](https://img.qammunity.org/2019/formulas/physics/college/ms6mzqcesyt82hb4155p1j5vk2geior08x.png)
![q=-(110)/(120\pi)(cos(120\pi((1)/(180)))-\cos120\pi(0))](https://img.qammunity.org/2019/formulas/physics/college/13dz1rwgbdr5uosu358xh9xgz0xe7ygmvr.png)
![q=-0.2918(-(1)/(2)-1)](https://img.qammunity.org/2019/formulas/physics/college/xv9lhqa9imvx7r1icokh23pr71wuybgqa6.png)
![q=0.438\ C](https://img.qammunity.org/2019/formulas/physics/college/z2l4rnvqlirfzvvvi4pxjfjgymo4ji9u3f.png)
Hence, The total charge passing a given point in the conductor is 0.438 C.