232k views
4 votes
Write a linear equation for the tables shown. y = mx + b y =__ x +____

x y x y
-6 12 -14 3
-5 14 -12 6
-4 16 -10 9
-3 18 - 8 12
-2 20 - 6 15

2 Answers

3 votes

Answers:

1) First table: y=2x+24

2) Second table: y=(3/2)x+24

Solution:

m=(y2-y1)/(x2-x1)

y-y1=m(x-x1)

1) First table. Taking the first two points of the table:

P1=(-6,12)=(x1,y1)→x1=-6, y1=12

P2=(-5,14)=(x2,y2)→x2=-5, y2=14

m=(y2-y1)/(x2-x1)

m=(14-12)/(-5-(-6))

m=(2)/(-5+6)

m=(2)/(1)

m=2

y-y1=m(x-x1)

y-12=2(x-(-6))

y-12=2(x+6)

y-12=2x+2(6)

y-12=2x+12

y-12+12=2x+12+12

y=2x+24

2) Second table. Taking the first two points of the table:

P1=(-14,3)=(x1,y1)→x1=-14, y1=3

P2=(-12,6)=(x2,y2)→x2=-12, y2=6

m=(y2-y1)/(x2-x1)

m=(6-3)/(-12-(-14))

m=(3)/(-12+14)

m=(3)/(2)

m=3/2

y-y1=m(x-x1)

y-3=(3/2)(x-(-14))

y-3=(3/2)(x+14)

y-3=(3/2)x+(3/2)(14)

y-3=(3/2)x+(3)(14)/2

y-3=(3/2)x+42/2

y-3=(3/2)x+21

y-3+3=(3/2)x+21+3

y=(3/2)x+24

User Hasan Bayat
by
8.7k points
3 votes

ANSWER TO QUESTION 1



y=2x+24



Step-by-step explanation

Method 1: Finding the equation given any 2 points

We choose any two of the ordered pairs from the first table, say


(-2,20)


and



(-3,18)


We determine the slope using the formula;



Slope=(y_2-y_1)/(x_2-x_1)


Let
(x_1,y_1) be
(-2,20)


and


(x_2,y_2) be
(-3,18)


Then,



Slope=(18-20)/(-3--2)




\Rightarrow Slope=(18-20)/(-3+2)



\Rightarrow Slope=(-2)/(-1)



\Rightarrow Slope=2


We now use the formula,



y-y_1=m(x-x_1) to find the equation of this line.


That is ;


y-20=2(x--2)



y-20=2(x+2)



y=2x+4+20



y=2x+24

ANSWER TO QUESTION 2

Method 2: Using Simultaneous equations


We use the slope intercept form for the second table


y=mx+b

The point


(-6,15) must satisfy this line.



15=-6m+b--(1)


The point


(-8,12) must also satisfy this line.



12=-8m+b--(2)


Equation (1) minus Equation (2) gives


2m=3



\Rightarrow m=(3)/(2)


We substitute
m=(3)/(2) in to equation (1)

and solve for b.


\Rightarrow 15=-6* (3)/(2)+b



\Rightarrow 15=-9+b



\Rightarrow 15+9=b



\Rightarrow 24=b



Solving simultaneously gives


b=24 and
m=(3)/(2)


Hence the equation is


y=(3)/(2)x+24









User Wing Lian
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories