Answer : D
![(3t^2-4t+1)/(t+3) - (t^2+2t+2)/(t+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/d2w8gk7s5cogkimoq69iw12wu560c5hc08.png)
The denominators are same
So we combine the numerators
![((3t^2-4t+1)-(t^2+2t+2))/(t+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/fu1hiwnbt2z6eptv4cm476o1pvgsysjp16.png)
To remove parenthesis we distribute negative sign inside the second parenthesis
![(3t^2-4t+1-t^2-2t-2))/(t+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ne6t9q2n2tssgb35lm3l5o8vqrkssfajwy.png)
![(3t^2-4t+1-t^2-2t-2))/(t+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ne6t9q2n2tssgb35lm3l5o8vqrkssfajwy.png)
![(2t^2-6t-1))/(t+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/yifjrppki6xcif4c4udbygh93002r3jkt3.png)
Morgan made a mistake. He forgot to distribute the negative sign
Morgan forgot to distribute the negative sign to two of the terms 2t and 2 inside second parenthesis