157k views
14 votes
The product of two number is 20 and the sum of square is 41 find the number​

User Vkozyrev
by
4.3k points

1 Answer

12 votes

Let the two number is a and b

so,

product =ab=20

sum of square=
\bold{a^2+b^2=41 }

Then,


\bold{(a+b)^2=a^2+b^2+2ab }


\bold{ (a+b)^2=41+2×40 }


\bold{ (a+b)^2=81 }


\bold{a+b=√(81) }


\bold{a+b=9 }•••••••••(equation I)

Now,


\bold{(a-b)^2=a^2+b^2-4ab }


\bold{ (a-b)^2=41-4×20 }


\bold{(a-b)^2=41-40 }


\bold{a-b=√(1) }


\bold{a-b=1 }••••••••(equation II)

Now,combine the equation I and equation II

we,get


\bold{a+b+a-b=9+1 }


\bold{a+\cancel{b}+a\cancel{-b}=10 }


\bold{ 2a=10 }


\bold{a=(10)/(2) }


\blue{\boxed{ a=5 }}

Then,

put the value of a in equation II.

we get that,


\bold{5-b=1 }


\bold{b+1=5 }


\bold{b=5-1 }


\bold{\boxed{\blue{b=4}} }

so,

The two number is 5 and 4.

User Gkgkgkgk
by
5.2k points