202k views
1 vote
Find the length of the tangent segment AB to the circles centered at O and O' whose radii are a and b respectively when the circles touch each other

1 Answer

0 votes

Answer:


AB=2√(ab)

Explanation:

From figure,


OA=a, \quad \quad O'B=b\\\Rightarrow OO'= (a+b) \quad \quad \text{and}\quad OD=(a-b)

In triangle
OO'D


(OO')^2=(OD)^2+(O' D)^2


\Rightarrow (a+b)^2=(a-b)^2+(O' D)^2\\\Rightarrow a^2+b^2+2ab-a^2-b^2+2ab=(O' D)^2\\\Rightarrow 4ab=(O' D)^2\\\Rightarrow O'D=2√(ab) \\\Rightarrow O' D=2√(ab)=AB \quad \quad [\because O' DAB\;\; \text{is a rectangle.}]

Hence,
AB=2√(ab)

Find the length of the tangent segment AB to the circles centered at O and O' whose-example-1
User Tim Lum
by
4.4k points