ANSWER TO PART A
The given triangle has vertices
![J(-4,1), K(-4,-2),L(-3,-1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/byl2x7nrcph8h7c2d413zol88rnkkboy5y.png)
The mapping for rotation through
counterclockwise has the mapping
![(x,y)\rightarrow (-y,x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/nt48xidgv1llf48rv1wx3xu2il5mthd25t.png)
Therefore
![J(-4,1)\rightarrow J'(-1,-4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wlil0owdobmiu7q83rbxhhlgefgdaz9pei.png)
![K(-4,-2)\rightarrow K'(2,-4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/m1vax9masmq9s9zboemhtzo2vxftmyiwva.png)
![L(-3,-1)\rightarrow L'(1,-3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/boabc013aml72mxks4l4kh4yuufhlx3nk1.png)
We plot all this point and connect them with straight lines.
ANSWER TO PART B
For a reflection across the y-axis we negate the x coordinates.
The mapping is
![(x,y)\rightarrow (-x,y)](https://img.qammunity.org/2019/formulas/mathematics/high-school/kytoo13g3gbt7v5u4kzvudm50aksr3rrzz.png)
Therefore
![J(-4,1)\rightarrow J''(4,1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/eg05nyicy1ryall85j6mzq5jtu0hjvsqzn.png)
![K(-4,-2)\rightarrow K''(4,-2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/25d3f03xslap1gg16j3wwh46gb4483pxtu.png)
![L(-3,-1)\rightarrow L''(3,-1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/142jzm84u9mqd2wt66prgifmzlseko3cuc.png)
We plot all this point and connect them with straight lines.
See graph in attachment