Answer-
The value of y is
when x=7 and z=4.
Solution-
As given in the question, y is directly proportional to x, so
-----------------1
And also y is directly proportional to z, so
-----------------2
Combining equation 1 and 2,
![\Rightarrow y=k.x.z](https://img.qammunity.org/2019/formulas/mathematics/high-school/n7x6ys6jfcyu0jnmy14cnd6nb2vdy2ooqn.png)
Where,
k = proportionality constant
When x=6 and z=1, y=4. Putting theses values,
![\Rightarrow 4=k* 6* 1](https://img.qammunity.org/2019/formulas/mathematics/high-school/3erouidnetb7wtwhn9wh8ed9ikzmg4qb4x.png)
![\Rightarrow 4=6k](https://img.qammunity.org/2019/formulas/mathematics/high-school/no7l51p4wd3y9rgf6mo3wh5mouutkb5bd6.png)
![\Rightarrow k=(4)/(6)](https://img.qammunity.org/2019/formulas/mathematics/high-school/g7wnbp487wji3goz5bn7a4fftqy9km8p1p.png)
![\Rightarrow k=(2)/(3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/epec2jp28ta9c36xpragpsyaj765657pna.png)
Now, we have to find the value of y, when x=7 and z=4
![\Rightarrow y=(2)/(3)* 7* 4](https://img.qammunity.org/2019/formulas/mathematics/high-school/vm4vpel692rgbnjj8x839iumshueat5hhz.png)
![\Rightarrow y=(56)/(3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/qgojyl7e430g4twmo481ajqpkpqplbomk8.png)
Therefore, the value of y is
when x=7 and z=4.