94.1k views
1 vote
An arched drainage culvert can be modelled by the function:

y=(x(191-x))/60

If water fills the culvert to a height of 136.5 mm, use the quadratic formula to calculate how wide the air space is directly above the water level.

1 Answer

7 votes

Substitute 136.5 for y.


136.5=(x(191-x))/(60)


8190=x(191-x)


8190=191x-x^(2)


x^(2) -191x+8190=0

Compare this equation with
ax^(2) +bx+c=0

a = 1, b = - 191, c = 8190


x=\frac{-b+\sqrt{b^(2)-4ac } }{2} or


x=\frac{-b-\sqrt{b^(2)-4ac } }{2}


x=\frac{191+\sqrt{191^(2)-4(1)(8190) } }{2} or


x=\frac{191-\sqrt{191^(2)-4(1)(8190) } }{2}


x=(191+√(36481-32760 ) )/(2) or


x=(191-√(36481-32760 ) )/(2)


x=(191+√(3721 ) )/(2) or


x=(191-√(3721 ) )/(2)


x=(191+61)/(2) or


x=(191-61)/(2)


x=(252)/(2) or


x=(130)/(2)

x = 126 or x = 65

Hence, the points on the curve are (65, 136.5) and (126, 136.5).

The width of the air space is the distance between these points.

Width =
\sqrt{(x_(2)- x_(1))^(2) +( y_(2)- y_(1)) ^(2)

=
\sqrt{(126- 65)^(2) +(136.5-136.5) ^(2)

= 126 - 65

= 61

Hence, width of the air space is 61m.



User Ssast
by
5.6k points