80.2k views
5 votes
For which equations below is x = –3 a possible solution? Check all that apply.

|x| = 3

|x| = –3

|–x| = 3

|–x| = –3

–|x| = –3

–|x| = 3

User Jstrong
by
5.7k points

2 Answers

2 votes
Correct are the first, the third, and the fifth
User Ravid
by
5.5k points
7 votes

Answer:

The correct options are A, C and E.

Explanation

If a absolution equation is defined as


|x|=a

Then the solutions of the equation are x=a and x=-a.

A.


|x|=3


x=\pm 3

So,x=-3 is a solution of this equation.

B.


|x|=-3

This equation has no solution because the value of |x| can no

be negative.

C.


|-x|=3


-x=\pm 3


x=\pm 3

So,x=-3 is a solution of this equation.

D.


|-x|=-3

This equation has no solution because the value of |-x| can no

be negative.

E.


-|x|=-3

Divide both sides by -1.


|x|=3


x=\pm 3

So,x=-3 is a solution of this equation.

F.


-|x|=3

Divide both sides by -1.


|x|=-3

This equation has no solution because the value of |x| can not be negative.

Therefore the correct options are A, C and E.

User Burak Cakir
by
6.2k points