we are given
![f(x)=4x^3+21x^2-294x+7](https://img.qammunity.org/2019/formulas/mathematics/college/glh12w1rlrldyjaatmg0yf2dkikogolzle.png)
For finding inflection point, we will find second derivative
![f'(x)=4* 3x^2+21* 2x-294+0](https://img.qammunity.org/2019/formulas/mathematics/college/72g6dpe78hmh5tq3kark359fdsx9cvwyf0.png)
![f'(x)=12x^2+42x-294](https://img.qammunity.org/2019/formulas/mathematics/college/2974vyaqali19a4gic0bo8s52b3yhvv37i.png)
now, we can find derivative again
![f''(x)=12* 2x+42-0](https://img.qammunity.org/2019/formulas/mathematics/college/p3g1v0wr1jtubztfbbgd6futiut7v34imv.png)
![f''(x)=24x+42](https://img.qammunity.org/2019/formulas/mathematics/college/a47v1d4gcm5b9ldkvfz5s7bkk7e27pzjct.png)
now, we can set it to 0
and then we can solve for x
![f''(x)=24x+42=0](https://img.qammunity.org/2019/formulas/mathematics/college/h5mf3auw43cnxd1kxdyg2ooj5zqq87aka8.png)
we get
![x=-(7)/(4)](https://img.qammunity.org/2019/formulas/mathematics/college/9h63n9e5rht1pwsyv036d8037a5tnm94zp.png)
we know that inflection point is a point where concavity changes
so, we will draw a number line and locate x=-7/4
and then we can find sign of second derivative on each interval
Concave up interval:
![(-(7)/(4),\infty)](https://img.qammunity.org/2019/formulas/mathematics/college/h9ehvj44crkciflqpd7iqqu5yen22eet2n.png)
Concave down interval:
![(-\infty,-(7)/(4))](https://img.qammunity.org/2019/formulas/mathematics/college/xw1izj7uym63qp79s44k65cwaqlhj5qof2.png)
Since, concavity changes at x=-7/4
So, there will be inflection point at x=-7/4
now, we can find y-value
![f(-(7)/(4)) =4(-(7)/(4))^3+21(-(7)/(4))^2-294(-(7)/(4))+7](https://img.qammunity.org/2019/formulas/mathematics/college/wj4ydc2bwrbgk30widi695bfxd2hc79qca.png)
![f(-(7)/(4)) =(4515)/(8)](https://img.qammunity.org/2019/formulas/mathematics/college/2icfpt682yvnv8t6b02yao9u1dkc29plmk.png)
So, the inflection point is
..............Answer