Answer-
The number of waterfowl at the lake on week 8 is 2555
Solution-
Taking
x = input variable = time in week
y = output variable = population of waterfowl
The general best fit equation in Quadratic Regression is,
![y=a x^2 + b x + c](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fv2e7k5ntxfd6ztmwli0hdtygelmlot635.png)
Where,
![a=\frac{(\sum x^2y\sum xx)-(\sum xy\sum xx^2)}{(\sum xx\sum x^2x^2)-({\sum xx^2)}^2}](https://img.qammunity.org/2019/formulas/mathematics/high-school/6ta0gtm9dr48r0nrocu94kyw07fgxxuw7c.png)
![b=\frac{(\sum xy\sum x^2x^2)-(\sum x^2y\sum xx^2)}{(\sum xx\sum x^2x^2)-({\sum xx^2)}^2}](https://img.qammunity.org/2019/formulas/mathematics/high-school/npng390xnavd6kagbkrg5lv7tla1tnsxfb.png)
![c=(\sum y)/(n)-b(\sum x)/(n)-a(\sum x^2)/(n)](https://img.qammunity.org/2019/formulas/mathematics/high-school/s3q947vogsl4hdcitb0hjr2aeucy8bbpg6.png)
And
![\sum xx=\sum x^2-((\sum x)^2)/(n)](https://img.qammunity.org/2019/formulas/mathematics/high-school/d286byn7fro36wwafzllu3ag2jk0hgvyx5.png)
![\sum xy=\sum xy-(\sum x\sum y)/(n)](https://img.qammunity.org/2019/formulas/mathematics/high-school/h3d5uht6blcjhdx6yysw074d4jg56ngqaq.png)
![\sum xx^2=\sum x^3-(\sum x\sum x^2)/(n)](https://img.qammunity.org/2019/formulas/mathematics/high-school/enrzj4t2v9pc4tyng0wrelz576487riglg.png)
![\sum x^2y=\sum x^2y-(\sum x^2\sum y)/(n)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ca3mom4niuhij491z7fmgyw20fgsl02vrc.png)
![\sum x^2x^2=\sum x^4-((\sum x^2)^2)/(n)](https://img.qammunity.org/2019/formulas/mathematics/high-school/excmthncrd59ehnub1r4e51xq6flqrjfbh.png)
Putting the values in the formula and calculating the values from the table we get,
a = 33, b = -24, c = 635
Therefore, the best fit curve is,
![y= 33x^2-24x+635](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fxp1kvowl5y6h567db3dlq0ym25uowhwb2.png)
We can calculate the population of waterfowl on 8 week, by putting x = 8
![y= 33(8)^2-24(8)+635](https://img.qammunity.org/2019/formulas/mathematics/middle-school/5rs17v5ygeziw5gwinaozg7smlh1xzvirr.png)
![y= 2555](https://img.qammunity.org/2019/formulas/mathematics/middle-school/dn63jveblhij3hhs132b27f5mctcdm6y8c.png)
Therefore, the number of waterfowl at the lake on week 8 is 2555.