we are given
![f(x)=x^3+4x^2+7x+6](https://img.qammunity.org/2019/formulas/mathematics/high-school/ofctcsj53aosrty33viraeughpvkdg3062.png)
We will use rational root theorem to find factors
We can see that
Leading coefficient =1
constant term is 6
so, we will find all possible factors of 6
![6=\pm 1,\pm 2,\pm 3,\pm 6](https://img.qammunity.org/2019/formulas/mathematics/high-school/a1z7raidyhfeeab932434mvzq6xtbg9dwy.png)
now, we will check each terms
At x=-2:
We can use synthetic division
we get
![f(-2)=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mr70f6xco62z59uoj2e02uud6btrvpntkw.png)
so, x+2 will be factor
and we can write our expression from synthetic division as
![f(x)=x^3+4x^2+7x+6=(x+2)(x^2+2x+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/n7v8baekb4lzdf291yrcx4maciubbr3b7s.png)
![f(x)=(x+2)(x^2+2x+3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/xl99kaavdyzj1pjeftxfe26gmrbarwl964.png)
now, we can find factor of remaining terms
![x^2+2x+3=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/eu4ke3oou93do2ejhphapffqbvnhr8p02l.png)
we can use quadratic formula
![\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}](https://img.qammunity.org/2019/formulas/mathematics/high-school/tvyw634bg3e5weundhs92w73ziktpdrdyf.png)
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/anbffapy80mickqb01jpbq5ttpr4bw5vtb.png)
we can compare our equation with quadratic equation
we get
![a=1,b=2,c=3](https://img.qammunity.org/2019/formulas/mathematics/high-school/9i3v3ys0cxlaoqagx9apxy10h5ym1s52x8.png)
now, we can plug these values
![x=(-2+√(2^2-4\cdot \:1\cdot \:3))/(2\cdot \:1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7rcg892q5n4sskfjavktcsosc18dk52wdx.png)
![x=-1+√(2)i](https://img.qammunity.org/2019/formulas/mathematics/high-school/mt252p8rdux71bffdedj5e9qifyxk88wov.png)
![x=(-2-√(2^2-4\cdot \:1\cdot \:3))/(2\cdot \:1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/irc1mysvbtx0zaolgir2v6mnpvjf6fv3lu.png)
![x=-1-√(2)i](https://img.qammunity.org/2019/formulas/mathematics/high-school/b4h6wsobdt3ggthmy2q0csbrwnjbbbmzvo.png)
so, we get
![x=-1+√(2)i,\:x=-1-√(2)i](https://img.qammunity.org/2019/formulas/mathematics/high-school/9wfltxi7n5fyyolyqqsjbtjoglu1pmaqof.png)
so, we can write factor as
![x^2+2x+3=(x-(-1+√(2)i))(x-(-1-√(2)i))](https://img.qammunity.org/2019/formulas/mathematics/high-school/aaicicjj1hxbxq1u9pdma8vcx5d8diulmw.png)
so, we get completely factored form as
...............Answer