39.0k views
22 votes
Pls help meeeeeeee pls pls pls

Pls help meeeeeeee pls pls pls-example-1

1 Answer

3 votes

Answer:

D.
(4x^(2) √(29))/(29)

Explanation:

Given the expression:


\frac{40x^(2) \sqrt{x^(12) } }{10x^(2) \sqrt{29x^(8) } }

divide by the common factor to have;


\frac{4\sqrt{x^(12) } }{\sqrt{29x^(8) } } =
\frac{4(x^(12)) ^{(1)/(2) } }{(29x^(8)) ^{(1)/(2) } }

=
(4x^(6) )/(√(29)x^(4) )

=
(4x^(2) )/(√(29) )

Rationalize the denominator, we have;


(4x^(2) )/(√(29) ) x
(√(29) )/(√(29) )

So that,


(4x^(2) √(29) )/(29)

Thus,


\frac{40x^(2) \sqrt{x^(12) } }{10x^(2) \sqrt{29x^(8) } } =
(4x^(2) √(29) )/(29)

The correct option is D.

User Jlunavtgrad
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories