39.0k views
22 votes
Pls help meeeeeeee pls pls pls

Pls help meeeeeeee pls pls pls-example-1

1 Answer

3 votes

Answer:

D.
(4x^(2) √(29))/(29)

Explanation:

Given the expression:


\frac{40x^(2) \sqrt{x^(12) } }{10x^(2) \sqrt{29x^(8) } }

divide by the common factor to have;


\frac{4\sqrt{x^(12) } }{\sqrt{29x^(8) } } =
\frac{4(x^(12)) ^{(1)/(2) } }{(29x^(8)) ^{(1)/(2) } }

=
(4x^(6) )/(√(29)x^(4) )

=
(4x^(2) )/(√(29) )

Rationalize the denominator, we have;


(4x^(2) )/(√(29) ) x
(√(29) )/(√(29) )

So that,


(4x^(2) √(29) )/(29)

Thus,


\frac{40x^(2) \sqrt{x^(12) } }{10x^(2) \sqrt{29x^(8) } } =
(4x^(2) √(29) )/(29)

The correct option is D.

User Jlunavtgrad
by
4.4k points