46.2k views
14 votes
- 5x2 + 2x + 9= 0
factorize​

User Bfx
by
3.2k points

1 Answer

1 vote

Answer:

Please check the explanation.

Explanation:

Given the quadratic equation

5x²−2x−9 = 0

To factor the quadratic function 5x²−2x−9, we should solve the corresponding quadratic equation 5x²−2x−9 = 0.

Indeed, if x₁ and x₂ are the roots of the quadratic equation ax²+bx+c=0, then

ax²+bx+c = a(x-x₁)(x-x₂)

Now,

solving the quadratic function 5x²−2x−9 = 0


-5x^2+2x+9=0

subtract 9 from both sides


-5x^2+2x+9-9=0-9

Simplify


-5x^2+2x=-9

Divide both sides by -5


(-5x^2+2x)/(-5)=(-9)/(-5)


x^2-(2x)/(5)=(9)/(5)

Add (-1/5)² to both sides


x^2-(2x)/(5)+\left(-(1)/(5)\right)^2=(9)/(5)+\left(-(1)/(5)\right)^2


x^2-(2x)/(5)+\left(-(1)/(5)\right)^2=(46)/(25)


\left(x-(1)/(5)\right)^2=(46)/(25) \\


\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)

so solving


x-(1)/(5)=\sqrt{(46)/(25)}


x-(1)/(5)=(√(46))/(√(25))

Add 1/5 to both sides


x-(1)/(5)+(1)/(5)=(√(46))/(5)+(1)/(5)


x=(√(46)+1)/(5)

similarly solving


x-(1)/(5)=-\sqrt{(46)/(25)}


x-(1)/(5)=-(√(46))/(5)

Add 1/5 to both sides


x-(1)/(5)+(1)/(5)=-(√(46))/(5)+(1)/(5)


x=(-√(46)+1)/(5)

Thus, the roots are:


x_(1) =(√(46)+1)/(5),\:x_(2)=(-√(46)+1)/(5)

Conclusion:

Since the roots are irrational, we do not factor further.

Therefore, we leave 5x²−2x−9 as it is.

User Cameron Booth
by
3.3k points