Answer:
, in degrees
Explanation:
The secant of an angle is given by:
![\sec{\theta} = (1)/(cos(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/3pllzii0mbq87ice1zhlfkhaiabpcnorxw.png)
In this question:
![\sec{\theta} = -2](https://img.qammunity.org/2022/formulas/mathematics/college/pjykghgkjlncqdk816fwtxtigazt4mwqeo.png)
So
![(1)/(cos(\theta)) = -2](https://img.qammunity.org/2022/formulas/mathematics/college/zp9rmwccipw035z16e3fll6jow1b0h7vgf.png)
![-2cos(\theta) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/oyycw334qhr19yrz41fe6rek40swkaxk87.png)
![cos(\theta) = -(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/95daeub5hqc8suf4zuh0ub9otfvo99xpge.png)
In the first quadrant, the angle that has cosine of 1/2 is 60º.
The cosine is negative in the second and in the third quadrant.
The equivalent angle to 60º in the second quadrant is of 180º - 60º = 120º.
The equivalent angle to 60º in the third quadrant is of 180º + 60º = 240º
So the values of
in the interval are:
, in degrees