Answer:
The equation of the perpendicular bisector line
5 x - 2 y + 31 =0
Explanation:
Explanation:-
Given points are ( 0,1) and (-10,5)
The Midpoint of given two points
![((x_(1)+x_(2) )/(2) , (y_(1)+y_(2) )/(2) )](https://img.qammunity.org/2022/formulas/mathematics/college/brmomqawoarpqmji4qji3efemfrffpmekc.png)
(-5 , 3)
The Slope of the line
m =
![(y_(2) -y_(1) )/(x_(2)-x_(1) ) = (5-1)/(-10) = (-2)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/h3t2dx1cyo6h0hfwg91rhz42gjlokwwkrw.png)
The perpendicular slope
=
![(-1)/(m) = (-1)/((-2)/(5) ) = (5)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/mou9xsisfwf5d6m7rhlnaqvw8621kmii76.png)
The equation of the perpendicular bisector line
![y - y_(1) = m (x - x_(1) )](https://img.qammunity.org/2022/formulas/mathematics/college/dtspcbajd3exlxkor1mp4qv4iouo98bppf.png)
![y - 3 = (5)/(2) ( x-(-5))](https://img.qammunity.org/2022/formulas/mathematics/college/mt92sa562ra1h02d4o4riuz323r8pfrgvc.png)
2 y - 6 = 5( x +5)
5 x + 25 -2y +6 =0
5 x - 2 y + 31 =0