Answer-
The vertex form of the given quadratic function is,
![\boxed {\boxed {y = (x+8)^2+10}}](https://img.qammunity.org/2019/formulas/mathematics/high-school/l1jy0sjqdphma9pto9d23q42vv9qy5itva.png)
Solution-
The equation for a parabola or quadratic function can be written in vertex form-
![y=a(x-h)^2+k](https://img.qammunity.org/2019/formulas/mathematics/college/tbh7747l327y3m70wjz077h6ij0n8qkom0.png)
The given quadratic function,
![\Rightarrow y = x^2 + 16x + 74](https://img.qammunity.org/2019/formulas/mathematics/high-school/kndrpx5j9wgbw4x90ihgin8wdna3e9hezw.png)
![\Rightarrow y = (x)^2 + (2* x * (16)/(2)) + 74](https://img.qammunity.org/2019/formulas/mathematics/high-school/kajqiqyx77bl5a7zo96e07j5ps5vy3phqx.png)
![\Rightarrow y = (x)^2 + (2* x * 8) + 74](https://img.qammunity.org/2019/formulas/mathematics/high-school/j6jz51ipqdp1xg1orltj6kwmbx6mmvmsk5.png)
![\Rightarrow y = (x)^2 + (2* x * 8) + (8)^2+74-8^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/c2eh598dmyudwpeijt1ywiyd0nyws7eohf.png)
![\Rightarrow y = (x+8)^2+74-64](https://img.qammunity.org/2019/formulas/mathematics/high-school/9dtt83p7hgdg7fcvpzu4mpa56pbjwyvrxm.png)
![\Rightarrow y = (x+8)^2+10](https://img.qammunity.org/2019/formulas/mathematics/high-school/m6tin8ps7a6qoikb2pb35jxtzmx5ukb1mp.png)
This is the vertex form of the given quadratic function with vertex at (-8, 10)