202k views
0 votes
Write the quadratic function in vertex form. Y = x2 + 16x + 74

User Thegrinner
by
4.9k points

1 Answer

6 votes

Answer-

The vertex form of the given quadratic function is,


\boxed {\boxed {y = (x+8)^2+10}}

Solution-

The equation for a parabola or quadratic function can be written in vertex form-


y=a(x-h)^2+k

The given quadratic function,


\Rightarrow y = x^2 + 16x + 74


\Rightarrow y = (x)^2 + (2* x * (16)/(2)) + 74


\Rightarrow y = (x)^2 + (2* x * 8) + 74


\Rightarrow y = (x)^2 + (2* x * 8) + (8)^2+74-8^2


\Rightarrow y = (x+8)^2+74-64


\Rightarrow y = (x+8)^2+10

This is the vertex form of the given quadratic function with vertex at (-8, 10)

Write the quadratic function in vertex form. Y = x2 + 16x + 74-example-1
User Stefan D
by
5.6k points