ANSWER TO QUESTION 1
Check attachment for long division.
From our long division we can write the following;
![(8x^4-6x^3+7x^2-11x+10)/(2x-1) =4x^3-x^2+3x-4+(6)/(2x-1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ozgxiqybmrpchc6f7efr4njq4lddlyz0o5.png)
Since the polynomial
leaves a non zero remainder of
when divided by
, we conclude that
not a factor of the dividend,
ANSWER TO QUESTION 2
We want to factor
![f(x)=x^4+x^3-8x^2+6x+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1o70kvyr0f3b61l3r0qr84u99mgsn8ue5u.png)
The possible rational roots are;
![\pm1, \pm 2,\pm 3, \pm 4,\pm 6,\pm 9, \pm18, \pm 36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/71a7bwq4vgirr4t5ax45rhd772g7yjw2pp.png)
We found
![f(-2)=(-2)^4+(-2)^3-8(-2)^2+6(-2)+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cctwn21fiqclm6gr17i6h9rtnoeu25xruc.png)
![f(-2)=16+-8-32+-12+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/g8x6winx0ao66e9765zd3wnaxcbezgrcyq.png)
![f(-2)=-36+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/28cct1ivkd0nx3iuw2d978f1mg2pvoqx4w.png)
![f(-2)=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mr70f6xco62z59uoj2e02uud6btrvpntkw.png)
and
![f(-3)=(-3)^4+(-3)^3-8(-3)^2+6(-3)+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8khug470a77tzjpvoz4w2lcrz89kzfc6ui.png)
![f(-3)=81-27-72-18+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/csyzh6d4li5rmhsh580wmcorbiv3k76awr.png)
![f(-3)=-36+36](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cscpn02tifdxujwtoiw410b1p1ewoq0kjo.png)
.
This means that
and
are factors of the polynomial.
This also means that
is also a factor of the polynomial
So we apply long division to obtain the remaining factors as shown in the attachment.
![\Rightarrow f(x)=x^4+x^3-8x^2+6x+36=(x+2)(x+3)(x^2-4x+6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/bhg1ep95rkhdqgczxril2zqvnvp42bugcl.png)
We factor further to obtain;
![\Rightarrow f(x)=x^4+x^3-8x^2+6x+36=(x+2)(x+3)(x-(2-√(2)i))(x-(2+√(2)i))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/zha0sy261qjozpywypcvab7209y3adv09u.png)