49.9k views
4 votes
Solve using long division
Please

Solve using long division Please-example-1
User Gamze
by
8.5k points

1 Answer

5 votes

1.
Solution,(2x^3+4x^2-5)/(x+3):\quad 2x^2-2x+6-(23)/(x+3)


Steps:


\mathrm{Divide}\:(2x^3+4x^2-5)/(x+3):\quad (2x^3+4x^2-5)/(x+3)=2x^2+(-2x^2-5)/(x+3)


\mathrm{Divide}\:(-2x^2-5)/(x+3):\quad (-2x^2-5)/(x+3)=-2x+(6x-5)/(x+3)


\mathrm{Divide}\:(6x-5)/(x+3):\quad (6x-5)/(x+3)=6+(-23)/(x+3)


\mathrm{Simplify}, =2x^2-2x+6-(23)/(x+3)


\mathrm{The\:Correct\:Answer\:is\:2x^2-2x+6-(23)/(x+3)}

2.
Solution, (4x^3-2x^2-3)/(2x^2-1):\quad 2x-1+(2x-4)/(2x^2-1)


Steps:


\mathrm{Divide}\:(4x^3-2x^2-3)/(2x^2-1):\quad (4x^3-2x^2-3)/(2x^2-1)=2x+(-2x^2+2x-3)/(2x^2-1)


\mathrm{Divide}\:(-2x^2+2x-3)/(2x^2-1):\quad (-2x^2+2x-3)/(2x^2-1)=-1+(2x-4)/(2x^2-1)


\mathrm{The\:Correct\:Answer\:is\:2x-1+(2x-4)/(2x^2-1)}


\mathrm{Hope\:This\:Helps!!!}


\mathrm{-Austint1414}

User Oliver Turner
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories