49.9k views
4 votes
Solve using long division
Please

Solve using long division Please-example-1
User Gamze
by
6.1k points

1 Answer

5 votes

1.
Solution,(2x^3+4x^2-5)/(x+3):\quad 2x^2-2x+6-(23)/(x+3)


Steps:


\mathrm{Divide}\:(2x^3+4x^2-5)/(x+3):\quad (2x^3+4x^2-5)/(x+3)=2x^2+(-2x^2-5)/(x+3)


\mathrm{Divide}\:(-2x^2-5)/(x+3):\quad (-2x^2-5)/(x+3)=-2x+(6x-5)/(x+3)


\mathrm{Divide}\:(6x-5)/(x+3):\quad (6x-5)/(x+3)=6+(-23)/(x+3)


\mathrm{Simplify}, =2x^2-2x+6-(23)/(x+3)


\mathrm{The\:Correct\:Answer\:is\:2x^2-2x+6-(23)/(x+3)}

2.
Solution, (4x^3-2x^2-3)/(2x^2-1):\quad 2x-1+(2x-4)/(2x^2-1)


Steps:


\mathrm{Divide}\:(4x^3-2x^2-3)/(2x^2-1):\quad (4x^3-2x^2-3)/(2x^2-1)=2x+(-2x^2+2x-3)/(2x^2-1)


\mathrm{Divide}\:(-2x^2+2x-3)/(2x^2-1):\quad (-2x^2+2x-3)/(2x^2-1)=-1+(2x-4)/(2x^2-1)


\mathrm{The\:Correct\:Answer\:is\:2x-1+(2x-4)/(2x^2-1)}


\mathrm{Hope\:This\:Helps!!!}


\mathrm{-Austint1414}

User Oliver Turner
by
5.8k points